Abstract:
In one embodiment, a magnetic recording head includes: a main pole configured to generate a magnetic field for recording data on a magnetic recording medium; an oscillation device positioned above the main pole in a track direction, the oscillation device being configured to generate a high-frequency magnetic field; a magnetic capping layer positioned above the oscillation device in the track direction, the magnetic layer having a front region at a media facing side (MFS) of the magnetic recording head and a rear region positioned behind the front region in an element height direction, wherein a thickness of the front region of the magnetic capping layer is less than a thickness of the rear region thereof; and a trailing shield positioned above the magnetic capping layer in the track direction.
Abstract:
The embodiments disclosed generally relate to a magnetic recording head having three magnetoresistive effect elements. The structure comprises a first magnetoresistive effect element on a lower magnetic shield layer. Additionally, two lower electrodes are disposed on the two sides of the first magnetoresistive effect element. A second magnetoresistive effect element is disposed on a lower electrode while a third magnetoresistive effect element on another lower electrode. An upper magnetic shield layer is disposed between the second magnetoresistive effect element and the third magnetoresistive effect element. The upper magnetic shield also serves as an electrode of the first magnetoresistive effect element.
Abstract:
In one embodiment, a magnetic head includes at least one magnetoresistive (MR) element positioned at a media-facing surface of the magnetic head, a lower portion of the at least one MR element extending in an element height direction away from the media-facing surface of the magnetic head farther than an upper portion of the at least one MR element, at least one back wiring layer positioned behind the upper portion of the at least one MR element in the element height direction and above the lower portion of the at least one MR element, the at least one back wiring layer being configured to electrically communicate with the at least one MR element, and an upper wiring layer positioned above the at least one MR element at the media-facing surface of the magnetic head and extending in the element height direction away from the media-facing surface of the magnetic head.
Abstract:
In one embodiment, a magnetic head includes a lower magnetic shield layer positioned at a media-facing surface, a pinned layer positioned above the lower magnetic shield layer at the media-facing surface, at least two MR elements extending in an element height direction by a first length positioned above the pinned layer and separated in a cross-track direction by an inner layer, bias layers extending in the element height direction by a second length positioned on outside edges of the MR elements and the pinned layer, and current paths positioned above and in electrical communication with the bias layers on either side of the inner layer, each current path extending in the element height direction away from the media-facing surface by a third length.
Abstract:
According to one embodiment, a magnetic head includes a lower magnetic shield positioned at a media facing surface of the head, a lower sensor positioned above the lower magnetic shield, the lower sensor including a lower free layer, a middle magnetic shield positioned above the lower sensor at the media facing surface of the head, and a back side antiferromagnetic (AFM) layer positioned behind the lower free layer in an element height direction, the back side AFM layer being configured to provide magnetic stabilization for the middle magnetic shield. In another embodiment, a method includes forming a lower sensor including a lower free layer, forming a back side AFM layer behind the lower free layer in an element height direction, and forming a middle magnetic shield above the lower sensor, wherein the back side AFM layer is configured to provide magnetic stabilization for the middle magnetic shield.
Abstract:
In one embodiment, a magnetic head includes a lower shield, a magnetoresistive (MR) film positioned above the lower shield, the MR film including a pinned layer, an intermediate layer positioned above the pinned layer, and a free layer positioned above the intermediate layer, the free layer being configured for sensing data on a magnetic medium, wherein a track width of the MR film is defined by a width of the free layer in a cross-track direction, a bias layer positioned on both sides of the MR film in the cross-track direction, a track insulating film positioned on both sides of the MR film in the cross-track direction and between the MR film and the bias layer, and an upper shield positioned above the bias layer and the MR film, wherein a length of the free layer in an element height direction perpendicular to an air bearing surface of the magnetic head is less than a length of the pinned layer in the element height direction.
Abstract:
In one embodiment, a magnetic head includes a lower shield layer positioned at a media-facing surface of the magnetic head, at least two magnetoresistive (MR) elements positioned above the lower shield layer, each MR element extending in an element height direction away from the media-facing surface of the magnetic head, back wiring layers positioned above at least one lower layer of each of the MR elements at a position away from the media-facing surface of the magnetic head in the element height direction, wherein the back wiring layers are configured to electrically communicate with the MR elements and configured to separately extract signals from each MR element during a read operation, and an upper shield layer positioned above the MR elements that is configured to electrically communicate with the MR elements.
Abstract:
A magnetic read head having a reduced read gap and a stable magnetic pinned layer structure. The sensor includes a seed layer that has a surface formed with an anisotropic texture. A magnetic pinned layer formed over the seed layer has a body centered cubic structure which causes the pinned layer structure to have a magnetic anisotropy with an easy axis oriented perpendicular to the air bearing surface when deposited over the textured seed layer. A magnetic free layer structure formed over the pinned layer structure and over a non-magnetic barrier layer has a face centered cubic structure which causes the magnetic free layer to have a magnetic anisotropy with an easy axis oriented parallel with the air bearing surface.
Abstract:
In one embodiment, a magnetic head includes a lower magnetic shield layer positioned at a media-facing surface, a pinned layer positioned above the lower magnetic shield layer at the media-facing surface, at least two MR elements extending in an element height direction by a first length positioned above the pinned layer and separated in a cross-track direction by an inner layer, bias layers extending in the element height direction by a second length positioned on outside edges of the MR elements and the pinned layer, and current paths positioned above and in electrical communication with the bias layers on either side of the inner layer, each current path extending in the element height direction away from the media-facing surface by a third length.
Abstract:
A two-dimensional magnetic recording (TDMR) multi-sensor read head has three stacked sensors separated by magnetic shields. The lower sensor is the primary sensor that is always aligned with the target track. The middle sensor is spaced laterally from the lower sensor a distance substantially equal to the track pitch (TP). The upper sensor is aligned with the lower sensor. The spacing D between the lower and upper sensors is selected to be related to TP and a maximum skew angle, where the skew angle is the angle between a line orthogonal to the sensor and the data track that varies with radial position of the head. The read head is connected to circuitry that selects two of the three sensors to be the active sensors depending on the radial position of the head and thus the skew angle of the head.