Abstract:
A semiconductor method is disclosed. The semiconductor method is performed upon semiconductor wafers, wherein each of the semiconductor wafers includes a first exposure field and a second exposure field, and each of the first exposure field and the second exposure field includes a first alignment mark and a second alignment mark. The method includes: determining a first alignment pattern for a first wafer by selecting one of the alignment marks of the first exposure field, and selecting one of the alignment marks of the second exposure field; performing the aligning operation upon the first semiconductor wafer by using the first alignment pattern; determining a second alignment pattern for a second wafer by selecting one of the alignment marks of the first exposure field, and selecting one of the alignment marks of the second exposure field, wherein the first alignment pattern is different from the second alignment pattern.
Abstract:
A mask including a plurality of baffles, a frame and a light transmission region, and a photo alignment method are provided. A support component and a movable component are disposed on the frame. The baffle is configured to block the light transmission region. The support component is configured to support the baffle which blocks the light transmission region. The movable component is configured to move the baffle to a position blocking the light transmission region.
Abstract:
Embodiments of the invention relate to a stage leveling device for a high-performance mask aligner, having enhanced leveling maintenance and, in particular, a novel technology of preventing leveling misalignment by firmly fixing a leveling-completed wafer stage. The stage leveling device, according to an embodiment of the invention addresses the problems experienced by conventional leveling devices. According to at least one embodiment, when a locking ring inserted at an outer side of a leveling rod maintains an inclined state, locking is performed such that an inner circumferential surface of the locking ring fixes opposite sides of the leveling rod by applying pressure thereto and, when the locking ring maintains a horizontal state, unlocking is performed such that the inner circumferential surface of the locking ring is spaced apart from the leveling rod.
Abstract:
A method may include forming a first grating and a second grating, disposed in a region of vertical overlap of the first and second gratings on different levels, respectively, having substantially the same pitch, and inclined with respect to each other, such that a bias value between the first and second gratings is changed along a length direction of the first and second gratings, using a lithography process. A method may include emitting a beam to the first and second gratings; and obtaining trend information associated with a diffracted beam from an image pattern of a beam from the first and second gratings, using the emitted beam, in which the trend information may concern changes in the intensity of the diffracted beam according to the bias value. An overlay error in at least one grating may be determined based on the trend information and an intensity of a diffracted beam.
Abstract:
The present invention provides a method of aligning a quadrate wafer in a first photolithography process. The method includes: step A: fabricating mask aligning markers in a periphery region of a mask, which is used for a first exposure process of the quadrate wafer, around a mask pattern of the mask; step B: during the first exposure process, positioning the quadrate wafer in a preset region by using the mask aligning markers on the mask, and exposing the quadrate wafer through the mask; and step C: performing alignment for the quadrate wafer during a second exposure process and subsequent exposure processes by using aligning markers on the quadrate wafer that are obtained during the first exposure process. The method may be easily and reliably performed to ensure intact dies at periphery of a quadrate wafer to be produced and thus render increased yield of chips.
Abstract:
According to one embodiment, a forming method of superposition checking marks includes forming a first superposition checking mark to have a first step with respect to an arrangement surface for the first superposition checking mark, forming an opaque film having a second step resulting from the first step on the arrangement surface, and forming on the opaque film a second superposition checking mark provided with a transparent film allowing observation of the second step.
Abstract:
A mask is disclosed which includes a plurality of first phase shift regions disposed on a first side of the mask, and a plurality of second phase shift regions disposed on a second side of the mask. The first phase shift regions and second phase shift regions may be alternating phase shift regions in which phase shift of the first phase shift regions is out of phase, for instance by 180 degrees, from phase shift of the second phase shift regions. A method for forming the mask, and a semiconductor device fabrication method using the mask is also disclosed.
Abstract:
A photo mask includes a pre-alignment key used in a pre-alignment process performed in a photolithography apparatus. The pre-alignment key includes a pre-alignment pattern including a light transmitting area and a light blocking area surrounding the pre-alignment pattern. The light blocking area includes a plurality of light blocking patterns and a diffraction grating pattern separating the plurality of light blocking patterns from each other.
Abstract:
A method for determining a registration error of a feature on a mask, including providing a first aerial image that was captured by means of a position measuring device and includes at least the feature, simulating, from pattern specifications of the mask, a second aerial image that includes at least the feature, taking into account at least one effect that causes distortion of the first aerial image, and determining the registration error of the feature as the distance of the position of the feature in the first aerial image from the position of the feature in the second aerial image. Also provided is a method for simulating an aerial image from pattern specifications of a mask and a position measuring device for carrying out the method.
Abstract:
A method of processing a semiconductor wafer may include providing a rotatably alignable photolithography mask that includes different mask images. Each mask image may be in a corresponding different mask sector. The method may also include performing a series of exposures with the rotatably alignable photolithography mask at different rotational alignments with respect to the semiconductor wafer so that the different mask images produce at least one working semiconductor wafer sector, and at least one non-working semiconductor wafer sector.