Abstract:
The invention refers to a nanoparticle comprising (i) a core comprising a first population of quantum dots (QDs) embedded in silica, (ii) a shell comprising a second population of QDs embedded in silica, (iii) at least one biomolecule selected from a peptide, a nucleic acid, a carbohydrate or a lipid which comprises a cleavage site that is susceptible of being cleaved by a hydrolytic enzyme, said biomolecule being bound to the surface of the shell through a moiety, and (iv) a photoluminescent label for each biomolecule, wherein the label is bound to the part of the biomolecule which detaches from the nanoparticle after cleavage of said biomolecule by a hydrolytic enzyme, wherein the first and second QD populations have different maximum photoluminescence emission wavelengths, and only the second QD population is susceptible of producing Forster resonance energy transfer (FRET) with the photoluminescent label.
Abstract:
A rapid, infrared spectroscopic method has been developed to assess the efficacy of targeted chemotherapeutics against the structure of the polypeptide target, based on the effect of natural polymorphic sequence variation on the conformation of the protein. This method has an advantage over the current genomics-based screening, as the new method provides a direct readout of the structural, and hence functional, outcome of polymorphisms to the protein region targeted by drugs. It allows rapid measurement of a protein's susceptibility to therapeutic targeted agents, prior to using the drug as treatment in the patient. This method can be used to identify biomarkers for a response for a protein to a drug which can be readily tested, interpreted, and used in a clinical setting.
Abstract:
The present invention generally relates to combination immunoassays, reagents and kits for simultaneous detection of HCV antigens and anti-HCV antibodies in a test sample.
Abstract:
The present invention relates to an (S)-enantiomer of an aminoheteroaryl compound for use in treating and/or preventing cancer in a subject. The invention further relates to a pharmaceutical composition comprising said compound. Another aspect of the invention is directed to an in vitro method for determining the effectiveness of said (S)-enantiomer of an aminoheteroaryl compound, or said pharmaceutical composition, the method comprising the steps of: (a) obtaining a cell or tissue sample from a subject; and (b) determining the subject's NUDT1/MTH1-status; wherein a NUDT1/MTH1-positive cell or tissue sample is indicative of an effective treatment and/or prevention of cancer. In addition, provided herein is a screening method for identifying a target of an (S)-enantiomer of an aminoheteroaryl compound. Furthermore, in context of this invention, the herein described compounds inhibit the biological activity of MTH1.
Abstract:
Disclosed herein are methods and kits which are useful for detecting presence of an enzyme and the relative amount of glycan associated with the enzyme in a test sample based upon the enzyme's ability to competitively inhibit the binding of a ligand in such test sample. The present invention provides the ability to evaluate cell culture conditions and optimize the desired glycoform content of recombinantly prepared enzymes.
Abstract:
Methods are provided for identifying agents capable of modulating cap-dependent RNA translation by comparing translation efficiency in the presence and absence of the agent in an in-vitro or in-vivo translation system that comprises eIF4A and an mRNA having one or more eIF4A-dependent translation-controlling motifs. The modulation of translation in the presence of the agent indicates the agent as capable of modulating cap-dependent mRNA translation. The method can be used to identify anti-cancer agents and oncogenes that may be responsible for tumorigenesis.
Abstract:
Disclosed herein are methods and kits which are useful for detecting presence of an enzyme and the relative amount of glycan associated with the enzyme in a test sample based upon the enzyme's ability to competitively inhibit the binding of a ligand in such test sample. The present invention provides the ability to evaluate cell culture conditions and optimize the desired glycoform content of recombinantly prepared enzymes.
Abstract:
The present invention provides a method for screening and evaluating ameliorants of dry skin caused by atopic dermatitis, comprising: evaluating a candidate drug as being an ameliorant of dry skin caused by atopic dermatitis in the case the candidate drug significantly increases expression and/or activity of bleomycin hydrolase in comparison with a control drug.
Abstract:
The invention provides methods of treating a meiotic kinase-associated disease, preferably the meiotic kinase HSET, by administering an inhibitor of the meiotic kinase. Preferably, the disease is associated with the presence of supernumerary centrosomes, such as cancer. Methods of inhibiting the growth of a tumor cell by contacting the cell with an inhibitor of a meiotic kinase, preferably HSET, are also provided. Screening methods for identifying inhibitors of the meiotic Kinase HSET are also provided. Methods of selecting subjects for treatment with an inhibitor of a meiotic kinase, such as HSET, are also provides.
Abstract:
A system and method for determining individualized medical intervention for a particular disease state, and especially for cancers, that includes the molecular profiling of a biological sample from the patient, determining whether any molecular findings including one or more genes, one or more gene expressed proteins, one or more molecular mechanisms, and/or combinations of such exhibit a change in expression compared to a reference, and identifying a non-specific disease therapy or agent capable of interacting with the genes, gene expressed proteins, molecular mechanisms, or combinations of such molecular findings that exhibited a change in expression.