摘要:
A method and apparatus for transmitting and receiving via a high speed downlink shared channel (HS-DSCH) is disclosed. A wireless transmit/receive unit (WTRU) receives the HS-DSCH while operating in a cell forward access channel (Cell-FACH) state, a cell paging channel (Cell-PCH) state, or URA paging channel (URA-PCH) state.
摘要:
A method and apparatus of feedback signaling using a high speed dedicated physical control channel (HS-DPCCH) includes transmitting to a first cell a first uplink feedback signal that includes channel quality information (CQI) associated with the first cell. A second uplink feedback signal that includes CQI information associated with a second cell is transmitted to the second cell.
摘要:
Enhanced MAC-es PDUs are created by concatenating enhanced MAC-es service data units (SDUs) based on higher layer PDUs and segments thereof, where segmentation information is included in the enhanced MAC-es headers. An enhanced MAC-e header is generated for each enhanced MAC-es PDU to describe information about the enhanced MAC-es PDU. An enhanced MAC-e PDU is created by concatenating enhanced MAC-es PDUs and enhanced MAC-e headers. An enhanced MAC-es header may include a Transmit Sequence Number (TSN) field, a Segmentation Description (SD) field, length (L) fields to indicate the length of each enhanced MAC-es SDU and/or logical channel indicator (LCH-ID) fields. An enhanced MAC-e header may include one or more logical channel indicator (LCH-ID) fields for corresponding enhanced MAC-es PDUs or MAC-s SDUs and length (L) fields.
摘要:
A method and an apparatus for providing control information for multi-carrier uplink transmission are disclosed. A wireless transmit/receive unit (WTRU) may set a happy bit for enhanced dedicated channel (E-DCH) transmissions on each uplink carrier considering aggregated transmission capability over all uplink carriers. The happy bit is set to “unhappy” if the WTRU is transmitting as much scheduled data as allowed by a current serving grant, the WTRU has enough power available to transmit at a higher rate, and total E-DCH buffer status (TEBS) requires more than a pre-configured period to be transmitted with a current effective data rate aggregated over all uplink carriers. The WTRU may send scheduling information including power headroom measured on the anchor uplink carrier and/or power headroom measured on the supplementary uplink carrier. For power headroom measurements, the WTRU may initiate a short-lived dedicated physical control channel loop on the supplementary carrier.
摘要:
Methods and apparatus utilize hybrid automatic repeat request (HARQ) transmissions and retransmissions that are usable on multiple carriers, i.e. joint HARQ processes. For example, a downlink (DL) shared channel transmission of a joint HARQ process is received on one of the carriers. A first part of an identity of the joint HARQ process is determined by using HARQ process identity data received on a shared control channel. A second part of the joint HARQ process identity is determined using additional information. The joint HARQ process identity is then determined by combining the first part and the second part. A WTRU is provided that is configured to receive the DL shared channel and to make the aforementioned determinations. A variety of other methods and apparatus configurations are disclosed for utilizing joint HARQ processes, in particular in the context of DC-HSDPA.
摘要:
A method and an apparatus for uplink transmission using multiple uplink carriers are disclosed. A wireless transmit/receive unit (WTRU) selects a dedicated channel medium access control (MAC-d) flow with highest priority data to be transmitted and performs uplink carrier selection and enhanced dedicated channel (E-DCH) transport format combination (E-TFC) restriction and selection to select a carrier among a plurality of carriers and select an E-TFC based on a maximum supported payload, a remaining scheduled grant payload of the selected carrier and a remaining non-scheduled grant payload. The WTRU then generates a medium access control (MAC) protocol data unit (PDU) for E-DCH transmission via the selected carrier based on the selected E-TFC.
摘要:
A method and wireless transmit receive unit (WTRU) are disclosed that is configured to perform cell reselection to another cell when the WTRU is in a CELL_FACH state using an Enhanced-Dedicated Channel (E-DCH). The cell reselection is based on internal measurements by the WTRU. Alternatively, the cell reselection can be WTRU based on the WTRU measurements reported to the network.
摘要:
Methods and apparatus utilize hybrid automatic repeat request (HARQ) transmissions and retransmissions that are usable on multiple carriers, i.e. joint HARQ processes. For example, a downlink (DL) shared channel transmission of a joint HARQ process is received on one of the carriers. A first part of an identity of the joint HARQ process is determined by using HARQ process identity data received on a shared control channel. A second part of the joint HARQ process identity is determined using additional information. The joint HARQ process identity is then determined by combining the first part and the second part. A WTRU is provided that is configured to receive the DL shared channel and to make the aforementioned determinations. A variety of other methods and apparatus configurations are disclosed for utilizing joint HARQ processes, in particular in the context of DC-HSDPA.
摘要:
A method and apparatus for supporting uplink (UL) protocol changes includes reconfiguring a medium access control (MAC) protocol from a first MAC protocol to a second MAC protocol. A hybrid automatic repeat request (HARD) process associated with the first MAC protocol is flushed, and a MAC-e/es reset is performed. Segments of a MAC-e/es packet data unit (PDU) that are contained in a segmentation entity are discarded.
摘要:
Efficient enhanced transport format combination (E-TFC) selection methods and apparatus support flexible radio link control (RLC) packet data unit (PDU) size and medium access control (MAC) layer segmentation. Methods for filling an enhanced medium access control (MAC-e) packet data unit (PDU) with data from logical channels as part of E-TFC selection are provided. In one embodiment, the E-TFC selection algorithm employs a single request from the MAC layer to the RLC layer to request the number of bits it is allowed to send for a logical channel to create enhanced MAC-e PDUs. In another embodiment, the MAC entity performs multiple requests to the RLC entity. In another embodiment, the MAC entity makes a single request to the RLC entity to create one or more enhanced MAC-e PDUs of a set size. A technique is also provided for maintaining a guaranteed bit rate (GBR) for non-scheduled data flows with variable-length headers.