Abstract:
A video frame processing method, which comprises: (a) capturing at least one first video frame via a first camera; (b) capturing at least one second video frame via a second camera; and (c) adjusting one candidate second video frame of the second video frames based on one of the first video frame to generate a target single view video frame.
Abstract:
A data processing apparatus has a compressor and an output interface. The compressor generates an output display data according to an input display data. The output interface packs the output display data into an output bitstream, and outputs the output bitstream to another data processing apparatus via a display interface. The display interface is a display serial interface (DSI) standardized by a Mobile Industry Processor Interface (MIPI) or an embedded display port (eDP) standardized by a Video Electronics Standards Association (VESA). In addition, the compressor adaptively adjusts a compression algorithm according to context characteristics in the input display data, power supply status, operational status of a storage device, image capture characteristic, configuration of the another data processing apparatus, and/or compression algorithm supported by the another data processing apparatus. Further, the another data processing apparatus adaptively adjusts a de-compression algorithm according to a compression algorithm supported by the compressor.
Abstract:
A video coding method includes at least the following steps: utilizing a visual quality evaluation module for evaluating visual quality based on data involved in a coding loop; and referring to at least the evaluated visual quality for deciding a target bit allocation of a rate-controlled unit in video coding. Besides, a video coding apparatus has a visual quality evaluation module, a rate controller and a coding circuit. The visual quality evaluation module evaluates visual quality based on data involved in a coding loop. The rate controller refers to at least the evaluated visual quality for deciding a target bit allocation of a rate-controlled unit. The coding circuit has the coding loop included therein, and encodes the rate-controlled unit according to the target bit allocation.
Abstract:
An image-based motion sensor has a camera system and a processing system. The camera system generates an image output including a plurality of captured images. The processing system obtains a motion sensor output by processing the image output, and identifies a user input as one of a plurality of pre-defined user actions according to the motion sensor output. Different functions of at least one application performed by one electronic device are controlled by the pre-defined user actions. The motion sensor output includes information indicative of at least one of a motion status and an orientation status of the image-based motion sensor. Each of the captured images has more than one color component, and only values of one single color component are involved in obtaining the motion sensor output.
Abstract:
A transmitter device includes a processing unit and a compression unit. The processing unit obtains a branch of data and partitions the branch of data into a plurality of snippets. Each snippet includes a group of data. The compression unit compresses each snippet into a plurality of packets according to value of each datum included in the corresponding snippet. The compression unit compares the value of each datum with a first threshold value to generate a first packet. The first packet includes first information indicating which data included in the corresponding snippet has the corresponding value not equal to the first threshold value. The compression unit further generates the remaining packets according to the first information.
Abstract:
An exemplary decoding method of an input video bitstream including a first bitstream and a second bitstream includes: decoding a first picture in the first bitstream; after a required decoded data derived from decoding the first picture is ready for a first decoding operation of a second picture in the first bitstream, performing the first decoding operation; and after a required decoded data derived from decoding the first picture is ready for a second decoding operation of a picture in the second bitstream, performing the second decoding operation, wherein a time period of decoding the second picture in the first bitstream and a time period of decoding the picture in the second bitstream are overlapped in time.
Abstract:
A data processing apparatus has a first compressor, a second compressor, a first output interface, and a second output interface. The first compressor generates first compressed display data by performing compression upon display data of a first partial region of a frame according to a first compression order. The second compressor generates second compressed display data by performing compression upon display data of a second partial region of the frame according to a second compression order. There is a boundary between the first partial region and the second partial region. In a horizontal direction, the first compression order on one side of the first boundary is opposite to the second compression order on another side of the first boundary. The first and second output interfaces output the first and second compressed display data via a first display port and a second display port of a display interface, respectively.
Abstract:
An exemplary video recording method of recording an output video sequence for an image capture module includes at least the following steps: deriving a first video sequence from an input video sequence generated by the image capture module, wherein the first video sequence is composed of a plurality of video frames; calculating an image quality metric value for each of the video frames of the first video sequence; referring to the image quality metric value to select or drop each of the video frames of the first video sequence, and accordingly obtaining a second video sequence composed of selected video frames; and generating the recorded output video sequence according to the second video sequence.
Abstract:
A data processing apparatus has a compression circuit and an output interface. The compression circuit has a pre-processor and a compressor. The pre-processor receives a first input display data in a first color domain, and performs a color format conversion upon the first input display data to generate a second input display data in a second color domain, wherein the second color domain is different from the first color domain. The compressor performs compression in the second color domain, wherein the compressor is arranged to compress the second input display data into a compressed display data in the second color domain. The output interface packs an output display data derived from the compressed display data into an output bitstream, and outputs the output bitstream via a display interface.
Abstract:
A projection display component of an electronic device includes a carrier and a first cover. The carrier is arranged to carry the electronic device. The first cover is arranged to partially reflect a projected image from the electronic device. The first cover is attached to the carrier via a first hinge set.