Abstract:
A user equipment (UE) enables synchronous peer-to-peer communication between devices for out of network coverage and partial network coverage scenarios. The UE performs a synchronization procedure and selects a spectrum resource within an uplink (UL) spectrum for device-to-device (D2D) communication. The UE, representing a synchronization source, generates timing information and synchronization signals for synchronizing a group of wireless communication devices (peer UEs) with the UE in a local synchronization area. The UE transmits, in selected or pre-allocated time or frequency resources, a synchronization signal including the timing information in order to synchronize devices in the local synchronization area.
Abstract:
Systems and methods for transmitting and receiving downlink shared channel (DL-SCH) transmissions encoded with convolutional codes are disclosed herein. User equipment (UE) may be configured to communicatively couple to an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Node B (eNB). The UE may be configured to transmit and receive machine-type communication (MTC). The eNB may determine that the UE is an MTC UE. The eNB may use a convolutional code typically used for encoding control channel transmission to encode the DL-SCH transmissions. The DL-SCH may be transmitted over a physical downlink shared channel (PDSCH) or may be transmitted over a physical downlink control channel (PDCCH) or enhanced PDCCH (EPDCCH). Downlink control information (DCI) may be transmitted before the DL-SCH and may include information that can be used to decode the DL-SCH. Alternatively, the DL-SCH may be transmitted without first transmitting DCI.
Abstract:
In embodiments, apparatuses, methods, and storage media may be described for processes that may be performed in a network with decoupled uplink (UL)-downlink (DL) association. Specifically, if a user equipment (UE) is configured to receive DL transmissions from a macro cell, and transmit UL transmissions to a small cell, hybrid automatic repeat request (HARQ) or power control (PC) may be described.
Abstract:
Devices and methods of enhancing narrowband communications are generally described. NPSS and NSSS are modulated to include an additional bit that indicates a duplexing scheme, a raster frequency offset (zero or non-zero), an operating mode (in-band or standalone/guard-band) or frame timing used by the eNB. The NPSS modulation uses conjugate ZC sequences multiplied by a cover code for each OFDM symbol. The NMIB may provide additional information related to the operating mode or offset. NSSS cyclic shifts may be used to indicate the offset or TDD/FDD use, as may relative locations of the NPSS and NSSS. The NSSS may use symbol-level modulation and time domain cyclic shifts to indicate the frame timing.
Abstract:
Technology for an eNodeB operable to apply scrambling to coded bits transported via a physical downlink shared channel (PDSCH) to a user equipment (UE) is disclosed. The eNodeB can generate a code word that comprises coded bits for transmission to the UE. The UE can be a bandwidth-reduced low complexity (BL) UE or a coverage enhancement (CE) UE. The eNodeB can identify, for the BL UE or the CE UE, a scrambling sequence to be applied to the coded bits. The scrambling sequence can be initialized using a defined initialization value (cinit). The eNodeB can apply the scrambling sequence with the defined initialization value to the coded bits to obtain scrambled coded bits. The eNodeB can encode the scrambled coded bits for transmission to the UE via the PDSCH.
Abstract:
Methods and architectures to reduce latency in next generation wireless networks such as LTE and/or new radio (NR), includes adjusting hybrid automatic repeat request (HARQ) techniques to selectively skip acknowledgements (ACKs) in various embodiments, and to configure one or more code block groups (CBG) designating code blocks for retransmission according to a code block group index bitmap present in received downlink control information (DCI).
Abstract:
Technology for a user equipment (UE), configured for coverage enhanced (CE) machine type communication (MTC) is disclosed. The UE can encode, at the UE, a UE capability message for transmission to a next generation node B (gNB) or evolved Node B (eNB), wherein the UE capability message includes a capability to support communication using a modulation and coding scheme (MCS) that includes 64 quadrature amplitude modulation (QAM). The UE can decode, at the UE, a higher layer signaling message to configure the UE to operate in a CE mode A. The UE can decode, at the UE, data received in a physical downlink shared channel (PDSCH) transmission to the UE that is modulated using a 64 QAM.
Abstract:
Systems and methods of enabling sub-PRB allocation for an efeMTC UE are described. The efeMTC UE transmits to an eNB or gNB support for a sub-PRB PUSCH transmission in a capability information element of a RRC message. The RRC message is transmitted after transmission of message 3 of the RACH procedure. The efeMTC UE receives semi-statistical dedicated RRC signaling that contains a sub-PRB configuration that is dependent on a sub-PRB maximum PUSCH channel bandwidth, a CE mode, a RL configured for the PUSCH and a TDD configuration and a sub-PRB PUSCH transmission allocation. The efeMTC UE transmits a sub-PRB PUSCH transmission on the sub-PRB PUSCH transmission allocation.
Abstract:
This disclosure relates to implementations to support non-UE-specific (i.e. common) and UE-specific search spaces (SS) for M-PDCCH. One implementation relates to a UE comprising RF circuitry to receive, from an eNB, configuration information of one or a plurality of common Search Spaces (CSSs) for M-PDCCH; and baseband circuitry to monitor the one or more configured CSS for M-PDCCH transmissions; wherein the RF circuitry and/or baseband circuitry is adapted to support a reduced bandwidth (BW). Another implementation relates to an eNB comprising RF circuitry to transmit configuration information of a plurality of CSSs for M-PDCCH to one or more UEs supporting a reduced BW, wherein the plurality of CSSs for M-PDCCH are differentiated by “based on functionality”-differentiation that includes the type of use case and/or an EC level of the UE.
Abstract:
Techniques discussed herein can facilitate RS (Reference Signal) sequence generation and mapping, and/or precoder assignment, for NR (New Radio). One example embodiment employable at a NR wireless communication device comprises processing circuitry configured to: generate one or more PN (Pseudo Noise) sequences based at least in part on an initial state of a PN generator; extract, for each PRB (Physical Resource Block) of one or more PRBs, an associated portion of an associated PN sequence of the one or more PN sequences, based at least in part on a reference subcarrier index, independent of a bandwidth part configuration and of a maximum supported number of PRBs; and generate, for each PRB of the one or more PRBs, an associated set of RS(s) for that PRB based at least in part on the extracted associated portion of the associated PN sequence for that PRB.