Abstract:
This disclosure describes methods, apparatus, and systems related to a high efficiency signal field coding system. A device may determine a high efficiency preamble in accordance with a high efficiency communication standard to be sent to one or more devices, the high efficiency preamble including at least in part a high efficiency signal field. The device may determine a common part included in the high efficiency signal field. The device may determine one or more device specific parts associated with the one or more devices. The device may encode the high efficiency signal field based at least in part on a predetermination combination of at least one of the common part or the one or more device specific parts. The device may cause to send the high efficiency preamble to the one or more devices, including the encoded high efficiency signal field.
Abstract:
Techniques for efficient small cell discovery are described. In one embodiment, for example, an evolved node B (eNB) may comprise logic, at least a portion of which is in hardware, the logic to determine a discovery signal transmission schedule for a series of radio frames based on a discovery signal muting pattern specifying at least one discovery-muted radio frame among the series of radio frames, and a transceiver to transmit at least one primary synchronization signal (PSS) and at least one secondary synchronization signal (SSS) during the series of radio frames according to the discovery signal transmission schedule. Other embodiments are described and claimed.
Abstract:
A new carrier type (NCT) has been developed for LTE in order to reduce the overhead associated with cell-specific reference signals (CRS) and control signaling via the PDCCH. The NCT is an LTE carrier with minimized control channel overhead and cell-specific reference signals. Described herein are techniques where, upon receiving a PDSCH grant from a eNB using DCI format 1A to indicate a fallback transmission mode, a UE transmits a CQI to the eNB based upon CSI-RS resources contained in the NCT.
Abstract:
Embodiments of a system and method for beamforming in a Wireless Network are generally described herein. In some embodiments, an enhanced Node B (eNB) transmits to User Equipment (UE), from a plurality (Nc) of antenna ports of a plurality (Nt) of transmit antennas, a data signal where signal power is allocated in eigen beams, each of the Nt transmit antennas having antenna ports that are adjustable in elevation and in azimuth. The eNB also determines and transmits to the UE a Pc set of the largest principal eigen beams of the data signal and receives, as feedback from the UE, a precoding matrix that identifies the antenna port from which strongest energy in the data signal is detected at the UE. The eNB uses the precoding matrix for beamforming.
Abstract:
The first circuitry may be operable to establish a first UE Receive (Rx) beam as being for reception of data from a first eNB. The second circuitry may be operable to process a transmission including Downlink Control Information (DCI), wherein the DCI carries an eNB cell-switching indicator. The first circuitry may also be operable to establish a second UE Rx beam as being for reception of data from a second eNB based on the eNB cell-switching indicator.
Abstract:
The present disclosure provides for the trigger of a beam refinement reference signal (BRRS) message. Triggering a BRRS message can include determining that a measured quality of a transmit and receive (Tx-Rx) beam pair is below the first value of the first quality threshold, the Tx-Rx beam pair corresponding to a current transmit (Tx) beam from an evolved node B (eNodeB) and the current receive (Rx) beam at the user equipment (UE), encoding a message for the eNodeB based on the determination that the quality of the Tx-Rx beam pair is below the quality threshold, wherein the message comprises a request for one or more BRRS, and processing the one or more BRRS to select a different Rx beam at the UE than the current Rx beam.
Abstract:
A communication device including a first directional antenna and a second directional antenna which may each be set to any one of a plurality of main beam directions for radio communication, a transceiver configured to determine a reception quality for at least some of the plurality of main beam directions using the first directional antenna and for at least some of the plurality of main beam directions using the second directional antenna, select a main beam direction of the plurality of main beam directions based on the reception qualities determined by the first directional antenna and based on the reception qualities determined by the second directional antenna, and perform communication using the selected main beam direction.
Abstract:
Machine-readable media, methods, apparatus and system for beam acquisition in a wireless system are disclosed. In some embodiments, a base station may comprise a transceiver to transmit, to a user equipment (UE), a plurality of beam reference signals (BRSs) via a plurality of transmission beams; and to receive, from the UE, a report to report receiving information associated with at least one of the BRSs on at least one of the transmission beams, wherein the report comprises an antenna identifier to identify a directional antenna panel or an antenna port associated with the directional antenna panel of the UE which receives the at least one of the BRSs on the at least one of the transmission beam.
Abstract:
Techniques for transmit power control calculation by user equipments (UEs) are discussed. An example apparatus employable by a UE comprises a processor configured to: configure, for each active link of a set of active links, a distinct set of power control parameters, wherein each active link comprises a distinct combination of a UE beam of a set of UE beams and a transmission/reception point (TRP) beam of a set of TRP beams; process an uplink (UL) grant received via a control channel that indicates a first active link of the set of active links, wherein the first active link comprises a first UE beam and a first TRP beam; calculate a first transmit power based at least in part on the distinct set of power control parameters configured for the first active link; and output UL data for transmission via the first UE beam at the first transmit power.