Abstract:
Techniques are described for improving handover performance in the context of UEs incorporated into unmanned aerial vehicles (UAVs, a.k.a., drones). A database is constructed that relates locations in a three-dimensional flying space to handover information that may include optimum scanning directions, optimum handover parameters, and/or optimum target cells to be monitored for possible handover.
Abstract:
Techniques for 60 GHz long term evolution (LTE)-wireless local area network (WLAN) aggregation (LWA) for keeping a 60 GHz channel alive for fifth generation (5G) and beyond are discussed herein. An apparatus of a 5G/long term evolution (LTE) evolved NodeB (eNB) is connected to a 60 GHz access point (AP) via an Xw interface, and has a baseband circuit with one or more baseband processors. The baseband circuit encodes one or more measurement events, wherein upon receipt by a user equipment (UE) sets a trigger to measure a 60 GHz access point.
Abstract:
Technology for supporting dual connectivity is disclosed. A user equipment (UE) may receive a radio resource control (RRC) reconfiguration message from a macro evolved node B (MeNB). The RRC reconfiguration message may indicate that a secondary cell associated with a secondary eNB (SeNB) is to be added for connection to the UE. The UE may complete an RRC reconfiguration procedure to add the secondary cell. The UE may send a preamble to the SeNB indicating that the UE has completed the RRC reconfiguration procedure. The UE may communicate data with the SeNB after sending the preamble to the SeNB, wherein the UE supports dual connectivity to the MeNB and the SeNB.
Abstract:
A User Equipment (UE) device operates to directly determine a target small cell for access or handover with the assistance of a macro cell network. The UE directly generates the connection and selects which small cell to access from among a subset of small cells chosen of a set of candidate small cells. The UE is provided dedicated assistance information from the evolved node B (eNB) or macro network device. The dedicated assistance information enables the UE to measure data from the candidate small cells within a heterogeneous network environment. The UE shares the measured data and connects directly to the selected small cell for an access or handover operation.
Abstract:
A user equipment device (UE) comprises physical layer circuitry configured to transmit and receive radio frequency electrical signals with one or more nodes of a radio access network; and processing circuitry. The processing circuitry is configured to receive system information via the network, wherein the system information indicates cell specific priority and frequency priority; identify candidate cells that have a cell specific priority that is higher than a cell priority of the current serving cell, have a frequency priority that is higher than a frequency priority of a current serving frequency, and satisfy a cell suitability criterion; and determine a candidate cell from the identified candidate cells to replace the current serving cell for communicating with the network.
Abstract:
User Equipment (UE), computer readable medium, and method to determine a mobility of the UE are disclosed. The UE may include circuitry configured to determine a plurality of signals from a serving cell. The each signal of the plurality of signals may be one or more of: a reference signal receive power (RSRP), a reference signal receive quality (RSRQ), a received signal strength indicator (RSSI), a signal-to-noise ratio (SNR), a signal-to-interference-ratio (SIR), a signal-to-interference-plus-noise ratio (SINR), and a CQI. The circuitry may be configured to determine a measure for each of a window size of the plurality of signals. Each measure may be a variance of the plurality of signals, a standard deviation of the plurality of signals, a percent confidence interval (CI) of a mean of the measure, and a linear combination of measures. The circuitry may determine whether the UE is stationary based on one or more measures.
Abstract:
Systems and methods for signaling in an increased carrier monitoring wireless communication environment are disclosed herein. In some embodiments, a user equipment (UE) may include control circuitry to configure the UE for increased carrier monitoring; determine, based on a first signal received from a network apparatus, whether a reduced performance group carrier is configured; determine, based on a second signal received from the network apparatus, whether a scaling factor is configured; and in response to a determination that no reduced performance group carrier is configured and a determination that no scaling factor is configured, allow the UE to monitor fewer carriers than required by increased carrier monitoring. Other embodiments may be disclosed and/or claimed.
Abstract:
Embodiments of user equipment (UE) and method for handover enhancement using a scaled time-to-trigger (TTT) and a time-of-stay are generally described herein. In some embodiments, the TTT is scaled based on at least one of a measured reference signal received quality (RSRQ) value of a serving cell and a time-of-stay in the serving cell.
Abstract:
Aspects of filtering coefficient configuration operations are described. Some aspects include a user equipment (UE) decoding a measurement configuration information element (IE) including a measurement quantity parameter, a reference signal (RS)-type filter configuration and at least one filter coefficient. In some aspects, the UE filters at least one of a cell measurement result and a beam measurement result, according to the measurement configuration IE. If the measurement quantity parameter indicates the cell measurement quantity, the UE can filter the cell measurement result according to the RS type filter configuration and the filter coefficient to determine a measurement evaluation input for a measurement reporting operation. If the measurement quantity parameter indicates the beam measurement quantity, the UE can filter the beam measurement result according to the RS type filter configuration and the filter coefficient to determine a beam measurement selection input for a beam measurement selection operation.
Abstract:
5G methods and architectures to determine active SCells and their bandwidth parts (BWP) used in carrier aggregation (CA) are disclosed in which activating a BWP for an active SCell is performed initially according to a default value provided in initial radio resource control (RRC) messaging. After initialization, SCells and the SCell BWPs used by the user equipment (UE) are activated by RRC messaging, downlink control information (DCI) or dedicated medium access control (MAC) control elements (MAC CEs) with the initial BWP used for an activated SCell being a default value provided during initialization.