Abstract:
A method for fabricating a pixel structure includes the following steps. A patterned semiconductor layer, an insulation layer, and a patterned metal layer are formed on a substrate sequentially. A first inter-layer dielectric (ILD) layer is formed to cover the patterned metal layer. A low temperature annealing process is performed after forming the first ILD layer. A hydrogen plasma treatment process is performed after the low temperature annealing process. A second ILD layer is formed to cover the first ILD layer after the hydrogen plasma treatment process. A third ILD layer is formed to cover the second ILD layer. A source electrode and a drain electrode are formed on the third ILD layer. A passivation layer is formed on the source electrode and the drain electrode. A pixel electrode is formed on the passivation layer. A pixel structure manufactured by the above-mentioned method is also provided.
Abstract:
A bridging solar cell includes a substrate, first, second, and third sets of bus bar electrodes, a first welding member, a first insulation film, and a second welding member. The first set of bus bar electrodes is disposed on the front surface of the substrate along a first direction. The second set of bus bar electrodes is disposed on the back surface of the substrate along a second direction and electrically connected to the first set of bus bar electrodes. The first welding member is electrically connected to the second set of bus bar electrodes. The first insulation film is disposed on the back surface. The third set of bus bar electrodes is disposed on the first insulation film along the second direction. The second welding member is disposed on the first insulation film and electrically connected to the third set of bus bar electrodes.
Abstract:
An optical sensing device includes a plurality of scanning lines having a plurality of first scanning lines and a plurality of second scanning lines, a plurality of sensing lines, a plurality of reading lines, and a plurality of optical sensing modules electrically connected to the scanning lines. Each optical sensing module includes a first optical sensing unit and a second optical sensing unit, each of which includes a sensing unit, a charge storage unit, and a reading unit. The optical sensing module further includes a plurality of differential amplifiers electrically connected to the corresponding reading lines, for determining the difference between the reading lines, wherein the difference indicates the ambient light variation. A first transistor of the sensing unit of the first optical sensing unit is different to a first transistor of the sensing unit of the second sensing unit in channel width.
Abstract:
A display device includes a plurality of pixel units. Each of the pixel units at least includes three sub-pixels for displaying different colors. The three sub-pixels are electrically connected to three different gate lines, and at least two of the three sub-pixels are electrically connected to the same data line.
Abstract:
A display device includes at least one light-emitting device and a patterned color filter layer. The light-emitting device is used to provide a white light having a white point chromaticity coordinate (Wx, Wy) where 0.23
Abstract:
A driving method of a touch panel includes providing a touch panel including a plurality of first sensing electrodes arranged along a first direction and a plurality of second sensing electrodes arranged along a second direction different from the first direction; simultaneously outputting driving signals through the plurality of first sensing electrodes for generating a first set of sensing signals on the plurality of second sensing electrodes; simultaneously outputting driving signals through the plurality of second sensing electrodes for generating a second set of sensing signals on the plurality of first sensing electrodes; determining whether the touch panel is touched according to the first set of sensing signals and the second set of sensing signals; and when determining the touch panel is touched, sequentially outputting driving signals through the plurality of first sensing electrodes for generating a third set of sensing signals on the plurality of second sensing electrodes.
Abstract:
A liquid crystal display panel includes a first substrate, a second substrate, a liquid crystal layer, and an electrode structure. The liquid crystal layer is disposed between the first substrate and the second substrate. The electrode structure is disposed between the first substrate and the second substrate, and the electrode structure is used to generate a horizontal electric field for driving the liquid crystal layer. The electrode structure includes a plurality of sub-electrodes. Each of the sub-electrodes includes a first conductive pattern, a second conductive pattern, and a first insulating layer. The first and the second conductive patterns are disposed in a stack configuration along a vertical projective direction perpendicular to the first substrate and the second substrate. An area of the first conductive pattern is larger than an area of the second conductive pattern. The first insulating layer is disposed between the first and the second conductive patterns.
Abstract:
A touch panel includes first sensing pads, first bridge lines, second sensing pads, adjusting electrodes, second bridge lines and third bridge lines. The first sensing pad has a first opening. The first sensing pads and the first bridge lines are arranged alternately along a first direction and electrically connected to each other. The second sensing pads and the second bridge lines are arranged alternately along a second direction and electrically connected to each other. The adjusting electrodes are disposed in the first openings and the second openings, and the adjusting electrodes are electrically disconnected from the first sensing pads and the second sensing pads. Adjacent adjusting electrodes are electrically connected through the third bridge line. The first sensing pads, the second sensing pads and the adjusting electrodes are made of a same patterned conductive layer.
Abstract:
A pixel driving circuit is electrically coupled between a first data line and a second data line and between a first scan line and a second scan line, and includes a first switch, a second switch, a third switch, a fourth switch, a liquid crystal capacitor electrically connected between the first switch and the second switch, a first capacitor electrically connected to the first switch, a second capacitor electrically connected to the second switch, a first storage capacitor, a second storage capacitor and at least one switching unit. The first storage capacitor is electrically connected to the third switch and supplied by a reference voltage. The second storage capacitor is electrically connected to the fourth switch and supplied by the reference voltage. The at least one switching unit is used for redistributing charges in the pixel driving circuit.
Abstract:
A display includes a source driver, a demultiplexer, a first data line, a second data line, a first pixel and a second pixel. The demultiplexer includes a first pixel signal transmission unit and a second pixel signal transmission unit. The first pixel signal transmission unit includes a first sub-pixel signal transmission unit, a second sub-pixel signal transmission unit and a third sub-pixel signal transmission unit. The first sub-pixel signal transmission unit and the second sub-pixel signal transmission unit share a drain. A second pixel signal transmission unit next to the first pixel signal transmission unit includes a fourth sub-pixel signal transmission unit, a fifth sub-pixel signal transmission unit and a sixth sub-pixel signal transmission unit. The fourth sub-pixel signal transmission unit and the fifth sub-pixel signal transmission unit share another drain.