摘要:
This disclosure relates to systems and methods of predicting physical parameters for a combustion fuel system. In one embodiment of the disclosure, a method of predicting physical parameters of a combustion fuel system includes causing water injection in at least one combustor. The water injection is associated with at least one time and performed during gaseous fuel operations or after liquid fuel operations. The method includes measuring exhaust spread data associated with the water injection and allows correlating the exhaust spread data to at least one physical parameter associated with a nozzle or a valve of the fuel system. The method further includes storing the exhaust spread data, the at least one physical parameter, and the at least one time to a database. The method further provides stored historical data from the database to an analytical model. The analytical model is operable to predict, based at least partially on the stored historical data, at least one future physical parameter associated with a future time.
摘要:
An economizer component of a controller used for fuel efficient temperature regulation of a medium circulated through a zone within a hydronic and steam heating system is disclosed. The controller component includes an input interface adapted to determine if the system requires heat based on receiving one or more of a call for heat from the zone, or an indication that a burner of the system is active. The component further includes a dynamic adaptation module configured to provide a burner control signal for heating the system if required. The control signal has an adjustable high limit, and the dynamic adaptation module is configured to increment the adjustable high limit by an increment value, to a value no greater than a maximum high limit, if it is determined that the system requires heat, and decrement the adjustable high limit by a decrement value, to a value no lower than a minimum high limit, if it is determined that the system does not require heat. The component is configured to dynamically adapt to changing heating system requirements received by the input interface. The component is adjusted by the dynamic adaptation module, to control the burner by way of the burner control signal to efficiently regulate the temperature of the medium circulated through the zone within the heating system.
摘要:
An economizer component of a controller used for fuel efficient temperature regulation of a medium circulated through a zone within a hydronic and steam heating system is disclosed. The controller component includes an input interface adapted to determine if the system requires heat based on receiving one or more of a call for heat from the zone, or an indication that a burner of the system is active. The component further includes a dynamic adaptation module configured to provide a burner control signal for heating the system if required. The control signal has an adjustable high limit, and the dynamic adaptation module is configured to increment the adjustable high limit by an increment value, to a value no greater than a maximum high limit, if it is determined that the system requires heat, and decrement the adjustable high limit by a decrement value, to a value no lower than a minimum high limit, if it is determined that the system does not require heat. The component is configured to dynamically adapt to changing heating system requirements received by the input interface. The component is adjusted by the dynamic adaptation module, to control the burner by way of the burner control signal to efficiently regulate the temperature of the medium circulated through the zone within the heating system.
摘要:
A controlling device that includes a model that predicts the value of a measured signal obtained when an operation signal is given to a thermal power generation plant, a function that learns a method of generating a model input such that a model output satisfies the plant value, a function that determines an operation signal to be given to the plant according to the learning result, a database that stores measured signal limit values set in advance, an external input interface that fetches measured signals from the plant, a measured signal database that stores the values of the fetched measured signals, and a function that determines an initial value of the plant model output value by using limit values of the measured signals and at least one of an average value, a maximum value, and a minimum value that are calculated from the measured signals stored in a measured signal database.
摘要:
A gas turbine output learning circuit is configured to compute a current combustion gas temperature TIT at an inlet of a gas turbine by linear interpolation by use of two characteristic curves A and B respectively representing relations between a pressure ratio and an exhaust gas temperature in the cases of the combustion gas temperature at the inlet of the gas turbine at 1400° C. and 1500° C., then to compute ideal MW corresponding to this combustion gas temperature TIT at the inlet of the gas turbine by linear interpolation according to 1400° C.MW and 1500° C.MW (temperature controlled MW), and then to correct the 1400° C.MW and the 1500° C.MW so as to match the ideal MW with a measured gas turbine output (a power generator output).
摘要:
A method for starting a combustion device, in particular after a first ignition failure, in particular for starting a gas burner under unknown basic conditions, wherein a characteristic diagram of a start air ratio depending on the burner temperature known from empirical analysis is stored for the combustion device in a memory, wherein a calibration of the starting process is performed, wherein the ratio of opening of the gas valve (w) to air volume mL necessary for ignition is iteratively determined by variation of the gas and/or air volume; and in case of ignition, the combustion device is started and the applicable air ratio (λ)IGNITION is stored.
摘要:
Systems and methods for monitoring and controlling burning operations are provided. A method of one embodiment includes igniting oil or gas with a burner (282) during a burning operation and monitoring the burning operation with a camera (290). This monitoring of the burning operation can include acquiring image data for a flame (290) of the burner via the camera and analyzing the acquired image data to detect image features indicative of combustion of the oil or gas via the burner. Additional systems, methods, and devices are also disclosed.
摘要:
A method controls a modulating gas furnace by monitoring a differential pressure associated with the modulating gas furnace, learning an intermediate value associated with an intermediate capacity between a minimum output capacity of the gas furnace and a maximum output capacity of the gas furnace, learning one of a high value associated with the maximum output capacity and a low value associated with a minimum output capacity, establishing an estimated operating curve using either the intermediate value and the low value or using the intermediate value and the high value, and operating the gas furnace in accordance with the estimated operating curve.
摘要:
A control system includes a basic control command operating unit, a fuel data storage unit, a running results database for storing past running results values of a control subject, a data creating unit configured to calculate a distance between data of the past running results values and the data sets and determining data set in which a distance between data becomes minimum, a modeling unit configured to model a relationship between operation parameters of a combustion apparatus and components in combustion gas of the combustion apparatus by using the data set determined by the data creating unit and a correcting unit for calculating combustion apparatus operation parameters with which components having a better condition than that of the components in a current gas are provided by using a model of the modeling unit and correcting operation command values of the basic control command operating unit by calculated operation parameters.
摘要:
A method of controlling a variable speed draft inducer motor and fan in a gas furnace. The method comprises the steps of: detecting a first fault driving the motor to a maximum operating range; detecting a second fault forcing the motor to operate towards a minimum operating range; and generating a fault signal if both faults are detected substantially simultaneously.