Abstract:
A method and an assembly for controlling an internal combustion engine having multiple burners is provided. Combustion measurement data is collected in a burner-specific manner for each burner and assigned to a burner identification identifying the respective burner. Performance measurement data of the internal combustion engine is also collected and used to determine a performance value. A machine learning model is trained by means of the combustion measurement data, the associated burner identifications and the performance measurement data, to generate burner-specific control data which optimizes the performance value when the burners are actuated in a burner-specific manner using the control data. The control data generated by the trained machine learning model is output for the burner-specific actuation of the burners.
Abstract:
This disclosure relates to systems and methods of predicting physical parameters for a combustion fuel system. In one embodiment of the disclosure, a method of predicting physical parameters of a combustion fuel system includes causing water injection in at least one combustor. The water injection is associated with at least one time and performed during gaseous fuel operations or after liquid fuel operations. The method includes measuring exhaust spread data associated with the water injection and allows correlating the exhaust spread data to at least one physical parameter associated with a nozzle or a valve of the fuel system. The method further includes storing the exhaust spread data, the at least one physical parameter, and the at least one time to a database. The method further provides stored historical data from the database to an analytical model. The analytical model is operable to predict, based at least partially on the stored historical data, at least one future physical parameter associated with a future time.
Abstract:
The invention relates to a device for denitrifying the flue gases of a fossil fuel-fired steam generator, especially a steam generator boiler (1) of a power plant, having apparatuses (10-12) for blowing a reagent effective in a predetermined temperature range into the interior (18) of the steam generator (1), which contains hot combustion gases. The device according to the invention is characterized in that the blow-in apparatuses (10-12) comprise a plurality of injection lances (10) arranged in spatially distributed manner and a control apparatus (13) for measuring the respective temperature distribution in the interior (18) and for selecting injection lances (10) suitable for blowing in based on the temperature distribution.
Abstract:
A Controller, a gas turbine, and a method for auto-tuning a combustion system of a gas turbine are provided. The method includes selecting a first tuning curve from a set of tuning curves for the gas turbine; unbalancing a stable operating point of the gas turbine by modifying one or more operational parameters based on a predefined recipe; determining tuning parameters and storing them while a current operating point of the gas turbine is brought back on the first tuning curve; and generating a backup of tuning parameters to recover the stable operating point.
Abstract:
A control system (1) for a complex process, particularly for controlling a combustion process in a power plant, a waste incinerator plant, or a cement plant, has a controlled system (14) and at least one controller (36), wherein the control system (1) is divided hierarchically into various levels (10, 20, 30, 40). The first level (10) represents the complex, real process to be controlled and is implemented by the controlled system (14). The second level (20) represents an interface to the process and is implemented by a process control system. The third level (30) represents the control of the process and is implemented by the at least one active controller (36). The fourth level (40) represents a superordinate overview and is implemented by a principal controller (44).
Abstract:
A method for controlling a combustion process, in particular in a firing chamber of a fossil-fired steam generator, is provided. The method includes determining spatially resolved measuring values in the firing chamber. Spatially resolved measuring values are transformed into state variables that may be used for control engineering, and they are subsequently fed as actual values to control circuits. The changes in the controlled variables determined in the control circuits are divided among a plurality of actuators in a backward transformation considering an optimization target. A corresponding combustion system is also provided.
Abstract:
Technologies are provided for applying energy to a combustion reaction. For example, a method may include supporting a combustion reaction; applying energy to the combustion reaction via one or more control signals; detecting a change in one or more parameters associated with the combustion reaction; comparing the change in the one or more parameters to a database; determining whether the change in the one or more parameters corresponds to a change in the combustion reaction; selecting a change in the one or more control signals from the database; and applying the change in the one or more control signals to change the a value of the energy applied to the combustion reaction responsive to changes in the one or more parameters associated with in the combustion reaction.
Abstract:
A system is provided that includes a combustion system having a plurality of jets; a spatial monitoring system with a plurality of sensors disposed in a spatial grid within or downstream from the combustion system; and a control system configured to adjust a forcing frequency of at least one fluid jet in the plurality of fluid jets in response to sensor feedback from the spatial monitoring system.
Abstract:
The invention relates to a device for denitrifying the flue gases of a fossil fuel-fired steam generator, especially a steam generator boiler (1) of a power plant, having apparatuses (10-12) for blowing a reagent effective in a predetermined temperature range into the interior (18) of the steam generator (1), which contains hot combustion gases. The device according to the invention is characterized in that the blow-in apparatuses (10-12) comprise a plurality of injection lances (10) arranged in spatially distributed manner and a control apparatus (13) for measuring the respective temperature distribution in the interior (18) and for selecting injection lances (10) suitable for blowing in based on the temperature distribution.
Abstract:
A device for optimizing a modeled fluidized bed combustion power plant (10) includes a model (112) of a fluidized bed combustion system and an optimizer (114). The model (112) of the fluidized bed combustion system provides at least one simulated output parameter of the fluidized bed combustion power plant (10) in response to a user selected parameter of the fluidized bed combustion power plant (10). The optimizer (114) provides at least one optimized simulated output parameter of the fluidized bed combustion power plant (10) in response to at least one user selected optimization setting (126) and the at least one simulated output parameter.