Abstract:
Distributed grid intelligence can enable a virtual power grid. Multiple consumer nodes can have local power sources, and be coupled to a same point of common coupling (PCC). The consumer nodes can be controlled by distributed control nodes at the consumer nodes. The control nodes control the distribution of power from the local power sources based on local power demand of each respective consumer node, and also based on distribution of power from the other respective control node. Thus, consumer nodes can share power generated locally, but operate independently without the need for central management or a central power plant.
Abstract:
A distributed control node enables local control of reactive power. A consumer node generates local real power on a consumer side of a point of common coupling (PCC). The control node converts local real power into reactive power with a conversion device on the consumer side of the PCC. The control node can deliver the reactive power to the grid to provide VARs to the grid from locally generated real power.
Abstract:
Distributed grid intelligence can enable a virtual power grid. Multiple consumer nodes can have local power sources, and be coupled to a same point of common coupling (PCC). The consumer nodes can be controlled by distributed control nodes at the consumer nodes. The control nodes control the distribution of power from the local power sources based on local power demand of each respective consumer node, and also based on distribution of power from the other respective control node. Thus, consumer nodes can share power generated locally, but operate independently without the need for central management or a central power plant.
Abstract:
A control node enables distributed grid control. The control node monitors power generation and power demand at a point of common coupling (PCC) between a utility power grid and all devices downstream from the PCC. The control node can have one or more consumer nodes, which can be or include customer premises, and one or more energy sources connected downstream. The control node monitors and controls the interface via the PCC from the same side of the PCC as the power generation and power demand. The control can include adjusting the interface between the control node and the central grid management via the PCC to maintain compliance with grid regulations at the PCC.
Abstract:
A distributed control node enables local control of reactive power. A metering device of the control node measures energy delivered by a grid network at a point of common coupling (PCC) to which a load is coupled. The metering device determines that the load draws reactive power from the grid network. The control node draws real power from the grid and converts the real power from the grid into reactive power. The conversion of real to reactive power occurs on the consumer side of the PCC. The conversion of real to reactive power enables delivery of reactive power to a local load from real power drawn from the grid.
Abstract:
A method for modifying an area control error signal for controlling the generation in each area of a multiple-area interconnected electric power system using net-interchange tie-line bias control where the area control error is calculated in accordance with the equationACE=.DELTA.P.sub.t1 -10B.times..DELTA.fwhere .DELTA.P.sub.t1 is the deviation of the measured net interchange from its scheduled value, .DELTA.f is the deviation of a system frequency from its set value, and B is the frequency bias of the area. The modification involves the integration of .DELTA.P.sub.t1 to produce a signal representing a measured value of the inadvertent interchange II'.sub.t1, and integration of .DELTA.f to produce a signal representing the time deviation TD'. The time deviation is multiplied by the value 10Bf.sub.o /3600 times 1/T where B is the area frequency bias and 1/T is the control weighting factor. The product of the multiplication is subtracted from the signal II'.sub.t1 and added to the area control error ACE to provide an error signal for correcting for inadvertent interchange and time deviation as well as for load changes. The integration of .DELTA.P.sub.t1 and .DELTA.f are periodically updated from accurate measurements of inadvertent interchange and time deviation.