Abstract:
A method for manufacturing a railcar coupler knuckle includes, before casting, positioning an external chill within a cope mold portion and a drag mold portion offset from and adjacent internal walls of a pulling face and a throat of the cope and drag mold portions, thus producing a casting with reduced micro-shrinkage in at least the throat, a high-stress section of the casting. Use of subsurface chills produces an improved surface with fewer inclusions when compared to an equivalent surface produced in a process without use of a subsurface chill. The external chill may be a cone chill of a larger size to improve cooling and solidification at and below the surface. The external chill may also be a cylindrical and/or oblong chill with a tapered design that may correspond to the internal walls of the cope and drag mold portions between the pulling face and the throat.
Abstract:
A piston for an internal combustion engine includes a mostly linearly displaceable sleeve for forming at least one piston pin bore and at least one slider that can be displaced at least mostly linearly and diagonally to the sleeve for forming at least one recess under a ring zone of the piston. The sleeve and the slider are at least indirectly coupled, such that the sleeve at least partially carries the slider when displaced. A method for opening and/or closing a casting device for a piston for an internal combustion engine, wherein a mostly linearly displaceable sleeve at least partially carries a slider that can be displaced mostly linearly and diagonally to the sleeve.
Abstract:
A method for manufacturing a railcar coupler knuckle includes, before casting, positioning an external chill within a cope mold portion and a drag mold portion offset from and adjacent internal walls of a pulling face and a throat of the cope and drag mold portions, thus producing a casting with reduced micro-shrinkage in at least the throat, a high-stress section of the casting. Use of subsurface chills produces an improved surface with fewer inclusions when compared to an equivalent surface produced in a process without use of a subsurface chill. The external chill may be a cone chill of a larger size to improve cooling and solidification at and below the surface. The external chill may also be a cylindrical and/or oblong chill with a tapered design that may correspond to the internal walls of the cope and drag mold portions between the pulling face and the throat.
Abstract:
A manually operated bullet casting machine comprising a mold assembly that is raised to a pouring position by means of a crank and filled from an overhead melting pot through the activation of a lever. The bullets are trimmed and ejected from the mold assembly as the crank is returned to its lowered position.