Abstract:
The present disclosure provides a display driving device, the display driving device including a driving module configured to periodically output driving time sequences, wherein each of the driving time sequences includes an execution time sequence and a blank time sequence; and an adjustment module configured to be connected to the driving module, wherein the adjustment module outputs adjusting time sequences to the driving module in a timing range of each of the blank time sequences. By the adjusting time sequences, a leakage of the display driving device is reduced.
Abstract:
A liquid crystal panel and a pixel structure thereof are described. The pixel structure has a plurality of pixel units, a plurality of black matrices, a plurality of data lines, a plurality of common electrodes and a plurality of gate lines. The black matrices, the data lines, the common electrodes and the gate lines are all disposed along and overlapped with dark lines of the pixel units for raising an opening rate of the pixel structure, thereby improving a display effect of the liquid crystal panel.
Abstract:
The present disclosure provides a display panel and a method for testing for an occurrence of a crack in the display panel. The display panel includes a panel body, a ground line, a first ground connecting portion, a first testing portion, a second ground connecting portion, a second testing portion, and a switch, the ground line surrounds the display region, the first ground connecting portion and the first testing portion are parallel connected to one end of the ground line, the second ground connecting portion and the second testing portion are parallel to another end of the ground line, the switch is electrically connected between the first ground connecting portion and the ground line.
Abstract:
A self-capacitive touch panel structure includes a touch detection chip and multiple self-capacitance electrodes arranged as a matrix and isolated with each other. Each self-capacitance electrode connected with the touch detection chip through a connection line. Each self-capacitance electrode electrically connected with a corresponding connection line through at least one via hole. A group of connection lines connected with a same column of the multiple self-capacitance electrodes are divided into an odd number group and an even number group. The connection lines in the odd number group are sequentially connected with a terminal of a corresponding self-capacitance electrode of the same column of the self-capacitance electrodes. The connection lines in the even number group are sequentially connected with a terminal of a corresponding self-capacitance electrode of the same column of the self-capacitance electrodes. An in-cell touch panel and a liquid crystal display including above structure are also disclosed.
Abstract:
A TFT array panel includes a primary display area and a slitting-edge display area. In the slitting-edge display area, a first metallic routing layer includes a first data line and a second metallic routing layer includes a first gate line. The first data line is connected to the second metallic routing layer through a hole in the interlayer dielectric layer so that the first data line overlaps the first gate line to form an overlapping capacitance to compensate for a gate line RC value.
Abstract:
A liquid crystal display apparatus is provided, and includes a plurality of sensing units arranged in an array; a plurality of dummy lines, each of the dummy lines being disposed between two rows of the sensing units, wherein each of the dummy lines has a plurality of dummy line units, each of the dummy line units corresponds to one of the sensing units, and is electrically connected to the one of the sensing units.
Abstract:
The present disclosure provides a display panel and a method for testing for occurrence of a crack in the display panel. The display panel includes a panel body, a ground line, a first ground connecting portion, a first testing portion, a second ground connecting portion, a second testing portion, a first switch and a second switch, the ground line surrounds the display region, the first ground connecting portion and the first testing portion are parallel connected to one end of the ground line, the second ground connecting portion and the second testing portion are parallel to another end of the ground line, the first switch is electrically connected between the first ground connecting portion and one end of the ground line, the second switch is electrically connected between the second ground connecting portion and another end of the ground line.
Abstract:
A flexible display panel is provided and defined with a special-shaped cutout area and a display area, including a substrate, and a plurality of pixel structures, a scan line layer, and a data line layer disposed above the substrate, wherein each of the plurality of the pixel structures includes three sub-pixels, and the scan line layer includes a plurality of scan lines, and the data line layer includes a plurality of data lines. The sub-pixels are arranged as an array over the substrate, and the scan lines and the data lines are disposed in the array of the sub-pixels. A scan line is disposed between every two rows of the sub-pixels and two data lines are disposed between every column of the sub-pixels in the special-shaped cutout area. Therefore, the frame of the special-shaped cutout area can be reduced to realize the narrow frame of the special-shaped cutout area.
Abstract:
A liquid crystal display panel and a thin film transistor array substrate are provided. The thin film transistor array substrate includes a pixel area and a fan-out area. The fan-out area has a groove. The thin film transistor array substrate has a substrate, a light shielding layer, a buffer layer, a poly-silicon layer, a first insulating layer, a scan line layer, a second insulating layer, a data line layer, a third insulating layer, a common line layer, a touch-sensing line layer, a fourth insulating layer, and a pixel electrode layer. The present invention can prevent wire shorts.
Abstract:
A self-capacitive touch panel structure includes a touch detection chip and multiple self-capacitance electrodes arranged as a matrix and isolated with each other. Each self-capacitance electrode connected with the touch detection chip through a connection line. Each self-capacitance electrode electrically connected with a corresponding connection line through at least one via hole. Wherein, a group of connection lines connected with a same column of the multiple self-capacitance electrodes are divided into an odd number group and an even number group, the connection lines in the odd number group are sequentially connected with corresponding self-capacitance electrodes from an terminal of the same column of the self-capacitance electrodes, and the connection lines in the even number group are sequentially connected with corresponding self-capacitance electrodes from another terminal of the same column of the self-capacitance electrodes. An in-cell touch panel and a liquid crystal display including above structure are also disclosed.