Abstract:
Disclosed is an air conditioner (AC) indoor unit including a housing installed on the ceiling and having an inlet and an outlet provided around the inlet and having a pair of straight sections facing each other and a pair of curved sections facing each other; a heat exchanger provided inside the housing and arranged in a main flow path between the inlet and the outlet; a blower fan configured to suck in air through the inlet, allow the air to exchange heat with the heat exchanger, and discharge the air through the outlet; and an auxiliary flow path guiding an auxiliary air current to change a direction of an air current discharged from the outlet. The direction of the discharged air current may be controlled by sucking in air around the outlet or blowing air to the periphery of the outlet through the auxiliary flow path without a blade.
Abstract:
A method of fabricating a wiring structure for a semiconductor device may include forming a lower wiring in a lower insulating layer, forming an etch stop layer covering the lower insulating layer and the lower wiring, forming an interlayer insulating layer on the etch stop layer, forming a preliminary via-hole through the interlayer insulating layer, partially etching the interlayer insulating layer to form a trench partially merged with the preliminary via-hole and a via-hole defined by a remaining portion of the preliminary via-hole, removing the etch stop layer exposed by the via-hole to expose the lower wiring, partially etching a contact area at which the trench and the via-hole are in contact with each other and forming an upper wiring in the via-hole and the trench to be electrically connected to the lower wiring.
Abstract:
In one embodiment, a semiconductor device comprising, a substrate comprising a wiring layer, a first conductive shielding layer disposed on the substrate and electrically isolated from the wiring layer, the first conductive shielding layer comprising a first bonding surface and a first end surface extending from the first bonding surface, a semiconductor chip disposed on the first conductive shielding layer, a molding member disposed over the first conductive shielding layer to cover the semiconductor chip, a second conductive shielding layer disposed over the first conductive shielding layer and the molding member, the second conductive shielding layer comprising a second bonding surface and a second end surface extending from the second bonding surface, and a bonding portion disposed between the first and second bonding surfaces, the bonding portion comprising a top surface and a bottom surface opposite to the top surface. The bottom surface of the bonding portion contacts the first bonding surface to form a first contact surface. The top surface of the bonding portion contacts the second bonding surface to form a second contact surface. An area of the second contact surface is larger than an area of the second end surface.
Abstract:
A particle sensing device and an air conditioner including a sensor has a sensing path through which air passes, a flow path housing which accommodates the sensor and guides air, and a flow path switching device to all air suctioned from the outside is guided to the sensing path, or some of the air suctioned from the outside and moving flows back in an obliquely upward direction and flows into the sensing path.
Abstract:
An air conditioner (AC) indoor unit includes a housing having an inlet and an outlet; a heat exchanger arranged inside the housing; a blower fan for sucking in air at the inlet to be subject to heat exchange with the heat exchanger, and discharging the heat-exchanged air out of the outlet; and an air flow control device for controlling an air flow discharged from the outlet by sucking in air around the outlet. The AC indoor unit may control the direction of a discharged air flow without a conventional blade structure, thereby increasing an amount of discharged air, reducing circulation noise, and enabling design differentiation.
Abstract:
An air conditioner (AC) indoor unit includes a housing having an inlet and an outlet; a heat exchanger arranged inside the housing; a blower fan for sucking in air at the inlet to be subject to heat exchange with the heat exchanger, and discharging the heat-exchanged air out of the outlet; and an air flow control device for controlling an air flow discharged from the outlet by sucking in air around the outlet. The AC indoor unit may control the direction of a discharged air flow without a conventional blade structure, thereby increasing an amount of discharged air, reducing circulation noise, and enabling design differentiation.
Abstract:
An air conditioner includes a housing having a suction port and a discharge port, a main fan configured to draw air into the housing through the suction port and discharge air from the housing through the discharge port, an auxiliary fan configured to draw, into the housing, air discharged by the main fan and a controller configured to control a rotational speed of the auxiliary fan to change a direction in which air is discharged from the housing.