Abstract:
An image sensor which operates in a global shutter mode is provided. The image sensor includes a pixel array comprising a plurality of pixels arranged in a plurality of rows and columns, a timing generator configured to generate row driver control signals which controls an integration period of a pixel of the plurality of pixels to include at least two sub integration periods, and a row driver configured to generate a plurality of row control signals which controls each of the rows in the pixel array based on the row driver control signals, wherein the timing generator is further configured to control a single image frame to include the integration period and a readout period of the pixel, based on the row driver control signals.
Abstract:
An image sensor includes a comparator configured to compare a pixel signal with a ramp signal and generate a comparison signal and a counter configured to be reset by a counter reset value based on an offset of the comparator and to generate a digital pixel signal according to the comparison signal.
Abstract:
An image sensor includes a first column pair and a second column pair among a plurality of columns of a pixel array, an analog-to-digital converter pair, and a switch arrangement circuit configured to connect the first column pair with the analog-to-digital converter pair in response to first switch control signals such that two rows among a plurality of rows in the pixel array are read during a single access time.
Abstract:
A correlated double sampling (CDS) circuit includes a correction circuit configured to receive an input pixel signal through a first node via a column line, correct the input pixel signal, and output the corrected pixel signal through a second node; and a comparator including first and second input terminals, the first input terminal being connected to the second node and being configured to receive the corrected pixel signal, and the second input terminal configured to receive a ramp signal, the comparator being configured to compare the corrected pixel signal with the ramp signal and output a comparison signal indicating a result of the comparing, wherein the correction circuit includes, a first capacitor connected between the first and second nodes, and one or more metal lines disposed adjacent to the first capacitor, and wherein at least one other capacitor is formed by the first capacitor and the metal line.
Abstract:
An image sensor including: a first photodiode; a first circuit including an overflow transistor and a first transfer transistor connected to the first photodiode, a switch element connected to the first transfer transistor and a capacitor disposed between the first transfer transistor and the switch element, wherein the capacitor is a physical capacitor; a second photodiode; and a second circuit including a second transfer transistor connected to the second photodiode, a reset transistor connected to an output of the first circuit and a driving transistor connected to the second transfer transistor and the output of the first circuit.
Abstract:
A washing machine provided with a structure thereof capable of draining and circulating by using a single pump and capable of enhancing washing performance by using a circulation of water and a rotation of a drum, and a control method thereof, in which the structure of the washing machine is simplified through the change of the flow path that enables the draining and the circulation of water by using a general pump while decreasing the number of the components of the washing machine. The manufacturing cost of the washing machine is reduced, because the washing machine accelerates the dissolution of detergent by generating large amount of bubbles by using the circulation of water and the rotation of the drum, without additional components, thereby washing performance of the washing machine is enhanced, and by maintaining the bubbles that are generated, the non-tangible quality that a user feels in the course of washing is enhanced.
Abstract:
An image sensor including: a first photodiode; a first circuit including an overflow transistor and a first transfer transistor connected to the first photodiode, a switch element connected to the first transfer transistor and a capacitor disposed between the first transfer transistor and the switch element, wherein the capacitor is a physical capacitor; a second photodiode; and a second circuit including a second transfer transistor connected to the second photodiode, a reset transistor connected to an output of the first circuit and a driving transistor connected to the second transfer transistor and the output of the first circuit.
Abstract:
In one embodiment, an image sensor includes a pixel array including a plurality of pixels, an analog-to-digital converter configured to convert analog pixel signals output from the pixels into digital signals, a first cluster configured to store a first group of digital signals among the digital signals and to output first image data, a second cluster configured to store a second group of digital signals among the digital signals and to output second image data, and at least one cluster switch connected to the first cluster and the second cluster, a first channel, and a second channel. The image sensor is configured to transmit at least one among the first image data and the second image data to at least one among the first channel and the second channel based on an operation mode.
Abstract:
An analog-to-digital converter includes a gain amplification unit configured to receive a pixel signal at a first node and to amplify a gain of the pixel signal, a first capacitor connected between the first node and a second node, an amplifier configured to receive and amplify a signal output from the gain amplification unit and the first capacitor, and a conversion circuit configured to convert an output signal of the amplifier to a digital signal based on a reference signal and output the digital signal as a first output signal.
Abstract:
A programmable gain amplifier includes a sampling circuit, a source follower, a first capacitor and an error amplifier. The sampling circuit is configured to perform correlated double sampling on an input signal using a reference voltage. The first capacitor is connected between the sampling circuit and the source follower. The error amplifier is connected between an input terminal of the source follower and an output terminal of the source follower. The error amplifier is configured to reset a voltage of the output terminal of the source follower to the reference voltage during a source follower reset operation.