Abstract:
A liquid crystal display includes: a substrate; a thin film transistor on the substrate; a pixel electrode connected with a terminal of the thin film transistor; a microcavity on the pixel electrode, and including a plurality of regions corresponding a pixel area; a liquid crystal layer in the microcavity; a liquid crystal injection hole exposing the microcavity; a common electrode on the microcavity; a supporting member on the common electrode; and a capping layer on the supporting member and covering the liquid crystal injection hole. The pixel electrode is connected with the terminal of the thin film transistor through a contact hole, and the contact hole is within the pixel area.
Abstract:
A display device includes a first substrate, a second substrate, and a liquid crystal layer. The first substrate includes pixels, some of the pixels are disposed in a first area and some of the pixels are disposed in a second area. The second substrate is spaced apart from and coupled to the first substrate. The liquid crystal layer is disposed between the first substrate and the second substrate. Each pixel is associated with a viewing angle, an imaginary line extending from a center of the viewing angle, and an angle between a surface of the first substrate and the imaginary line. The angle of a pixel disposed in the first area differs from the angle of a pixel disposed in the second area.
Abstract:
A liquid crystal display apparatus is provided which includes a pixel including a storage capacitor, wherein the storage capacitor is connected to be between a pixel electrode and a storage voltage line, a light sensing unit connected to be between the storage voltage line and a first node, and a transfer unit connected to transfer a voltage from the first node to a sensing line.
Abstract:
A nanocrystal display device includes a plurality of pixels; a gate line extended in a row direction; a data line extended in a column direction; and a second insulating layer on the data line. Each pixel includes first and second pixel areas adjacent to each other in the column direction; first and second pixel electrodes on the second insulating layer of the first and second pixel areas; a first black matrix on the second insulating layer, and having a step difference greater than that of the first and second pixel electrodes; a common electrode extended in the row direction, contacting the first black matrix and spaced apart from the second insulating layer in the first and second pixel areas, and a tunnel-shaped cavity between the common electrode, the first black matrix and the second insulating layer; and a liquid crystal layer in the tunnel-shaped cavity.
Abstract:
In a display device, a driving element is disposed on a rear substrate, and a passivation layer covers the driving element. A pixel electrode is disposed on the passivation layer and is connected to the driving element. An organic emission layer is disposed on the pixel electrode and is configured to emit light toward the rear substrate. A common electrode is disposed on the organic emission layer. A touch electrode is disposed between the rear substrate and the passivation layer, and it forms a capacitive component when an external touch occurs.
Abstract:
A display device includes: a display panel including a display area, and a peripheral area disposed in the vicinity of the display area; a scan driver including a plurality of stages integrated on the peripheral area; a plurality of gate lines connected to the plurality of stages, respectively; and a plurality of pixel rows in the display area and connected with the plurality of gate lines, respectively. The plurality of stages and the plurality of pixel rows are each arranged in a first direction in a line, the peripheral area includes a fan-out region between the plurality of stages and the plurality of pixel rows, and at least one of the plurality of gate lines in the fan-out region is inclined with respect to the first direction, and a second direction perpendicular to the first direction.
Abstract:
A touch sensor including first touch electrode lines extending in one direction and second touch electrode lines extending in a diagonal direction sloped with respect to the first touch electrode lines. A first touch electrode line intersects a second touch electrode line.
Abstract:
In a display device, a driving element is disposed on a rear substrate, and a passivation layer covers the driving element. A pixel electrode is disposed on the passivation layer and is connected to the driving element. An organic emission layer is disposed on the pixel electrode and is configured to emit light toward the rear substrate. A common electrode is disposed on the organic emission layer. A touch electrode is disposed between the rear substrate and the passivation layer, and it forms a capacitive component when an external touch occurs.
Abstract:
A display device includes: a display panel including a display area, and a peripheral area disposed in the vicinity of the display area; a scan driver including a plurality of stages integrated on the peripheral area; a plurality of gate lines connected to the plurality of stages, respectively; and a plurality of pixel rows in the display area and connected with the plurality of gate lines, respectively. The plurality of stages and the plurality of pixel rows are each arranged in a first direction in a line, the peripheral area includes a fan-out region between the plurality of stages and the plurality of pixel rows, and at least one of the plurality of gate lines in the fan-out region is inclined with respect to the first direction, and a second direction perpendicular to the first direction.
Abstract:
A display device includes: a first switching element which transmits a first data voltage; a second switching element which transmits a second data voltage; a driving transistor connected to the first switching element and the second switching element, where the driving transistor is driven based on the first data voltage and the second data voltage; and an organic light emitting diode connected to the driving transistor, where the organic light emitting diode emits light based on an output of the driving transistor, and a driving method thereof.