Abstract:
A gate driver includes a plurality of shift registers and a plurality of connection controllers. The shift registers are connected to a plurality of gate lines of a stretchable display panel, respectively. The shift registers are grouped into a plurality of shift register groups. N adjacent shift registers constitute each of the shift register groups, where N is an integer greater than or equal to 2. The connection controllers change a connection structure of the N adjacent shift registers included in the each of the shift register groups according to whether the stretchable display panel is stretched.
Abstract:
A gate driver includes a plurality of shift registers and a plurality of connection controllers. The shift registers are connected to a plurality of gate lines of a stretchable display panel, respectively. The shift registers are grouped into a plurality of shift register groups. N adjacent shift registers constitute each of the shift register groups, where N is an integer greater than or equal to 2. The connection controllers change a connection structure of the N adjacent shift registers included in the each of the shift register groups according to whether the stretchable display panel is stretched.
Abstract:
A stretchable display panel and display device having the same are disclosed. In one aspect, the display panel includes a plurality of first signal lines and a plurality of pixels configured to receive a first signal through the first signal lines. The pixels are divided into a plurality of pixel groups each including a first pixel and second pixel that are adjacent to each other. Each of the first signal lines that are connected to the same pixel group are configured to be electrically connected to each other when the distance between the first and second pixels is less than or equal to a predetermined reference value. Each of the first signal lines that are connected to the same pixel group are further configured to be electrically insulated from each other when the distance between the first and second pixels is greater than the predetermined reference value.
Abstract:
An exposure method includes loading a first substrate on a loading portion , the first substrate having a photo alignment agent which is coated on the first substrate, irradiating the first substrate by moving the first substrate in a first speed in a first direction to a working portion while loading a second substrate on the loading portion, the working portion having an ultra violet light source generating ultra violet ray to harden a photo alignment agent, simultaneously irradiating the first substrate and the second substrate by moving the first substrate and the second substrate in the first direction in the working portion, and unloading the first substrate from an unloading portion while irradiating the second substrate by moving the second substrate in the first direction in the working portion.
Abstract:
A display device includes a display panel, a scan driver, a data driver, and a storage area. The display panel includes data lines, horizontal scan lines, vertical scan lines, pixels at crossing regions of the data and horizontal scan lines, and contact holes that connect the horizontal scan lines to the vertical scan lines. The scan driver provides scan signals to the display panel through the vertical scan lines. The data driver provides data signals to the display panel through the data lines. The storage area stores location information of the contact holes.
Abstract:
A horizontal line driver providing a scan signal to scan lines, and including: first scan signal output blocks providing the scan signal to scan lines in a first side display area, wherein each of the first scan signal output blocks include a first output buffer; second scan signal output blocks providing the scan signal to scan lines in a first front display area including curved edges, wherein each of the second scan signal output blocks include a second output buffer; and third scan signal output blocks providing the scan signal to scan lines in a second front display area. Each of the third scan signal output blocks include a third output buffer. The width of the first front display area is larger than a width of the first side display area but is smaller than a width of the second front display area, and the width gradually increases.
Abstract:
A thin-film transistor substrate may include a first thin-film transistor and a second thin-film transistor which are disposed on a substrate. The first thin-film transistor may include a first semiconductor layer, a first gate electrode, and a first electrode. The second thin-film transistor may include a second semiconductor layer disposed on the first semiconductor layer and overlapping at least a portion of the first semiconductor layer, a second gate electrode, and a second electrode electrically connected to the first electrode. The second electrode may overlap the first electrode.
Abstract:
A thin-film transistor substrate may include a first thin-film transistor and a second thin-film transistor which are disposed on a substrate. The first thin-film transistor may include a first semiconductor layer, a first gate electrode, and a first electrode. The second thin-film transistor may include a second semiconductor layer disposed on the first semiconductor layer and overlapping at least a portion of the first semiconductor layer, a second gate electrode, and a second electrode electrically connected to the first electrode. The second electrode may overlap the first electrode.
Abstract:
A panorama display device includes a first display panel flexibly hinged to provide a hinged part and a non-hinged part of the first display panel, a first polarization unit on the first display panel, the first polarization unit including a separated part separated from a remaining part of the first polarization unit, a second display panel flexibly hinged to provide a hinged part and a non-hinged part of the second display panel, and a second polarization unit on the second display panel, the second polarization unit including a separated part separated from a remaining part of the second polarization unit. The hinged part of the first display panel is hinged with the separated part of the first polarization unit. The hinged part of the second display panel is hinged with the separated part of the second polarization unit. The first and second display panels are connected to each other.