Abstract:
A laser apparatus includes: a laser which selectively irradiates a laser beam to a portion of a target based on a laser driving voltage, where an intensity of the laser beam is substantially stabilized within about 10 nanoseconds; a stage which controls a relative location between the target and the laser based on a stage driving voltage; and a controller which applies the stage driving voltage to the stage, and applies the laser driving voltage to the laser
Abstract:
In an organic light emitting diode (OLED) display and a manufacturing method thereof, the OLED display includes a substrate main body; an insulation layer pattern formed on the substrate main body, and including a first thickness layer and a second thickness layer thinner than the first thickness layer; a metal catalyst that is scattered on the first thickness layer of the insulation layer pattern; and a polycrystalline semiconductor layer formed on the insulation layer pattern, and divided into a first crystal area corresponding to the first thickness layer and to a portion of the second thickness layer adjacent to the first thickness layer and a second crystal area corresponding to the remaining part of the second thickness layer. The first crystal area of the polycrystalline semiconductor layer is crystallized through the metal catalyst, and the second crystal area of the polycrystalline semiconductor layer is solid phase crystallized.
Abstract:
A polishing slurry for silicon, a method of polishing polysilicon, and a method of manufacturing a thin film transistor substrate, the slurry including a polishing particle; a dispersing agent including an anionic polymer, a hydroxyl acid, or an amino acid; a stabilizing agent including an organic acid, the organic acid including a carboxyl group; a hydrophilic agent including a hydrophilic group and a hydrophobic group, and water, wherein the polishing particle is included in the polishing slurry in an amount of about 0.1% by weight to about 10% by weight, based on a total weight of the slurry, a weight ratio of the polishing particle and the dispersing agent is about 1:0.01 to about 1:0.2, a weight ratio of the polishing particle and the stabilizing agent is about 1:0.001 to about 1:0.1, and a weight ratio of the polishing particle and the hydrophilic agent is about 1:0.01 to about 1:3.
Abstract:
A method of manufacturing a display and a chemical mechanical polishing method which employ a chemical mechanical polishing apparatus that includes a conveyor belt to transfer a substrate, a polishing head disposed on the conveyor belt, and a body part which moves the polishing head and supplies a slurry to the polishing head. The polishing head includes a first polishing part including a first polishing pad surrounding a first slurry outlet, and a second polishing part surrounding the first polishing part and including a second polishing pad. A second slurry outlet is formed between the first polishing part and the second polishing part, and the first polishing part and the second polishing part are movable independently of each other in a direction substantially perpendicular to the substrate.
Abstract:
An apparatus for crystallizing an active layer of a thin film transistor, the apparatus includes a first laser irradiating a first beam toward a substrate, an amorphous layer on the substrate being crystallizable into the active layer of the thin film transistor by the first beam, and a second laser irradiating a second beam toward the substrate to heat the active layer, the second beam having an asymmetric intensity profile in a scanning direction of the first and second beams.
Abstract:
An OLED display includes a first polysilicon layer pattern on a substrate having a first gate electrode, a second gate electrode, and a first capacitor electrode, a gate insulating layer pattern, a second polysilicon layer pattern including a first active layer, a second active layer, and a capacitor polycrystalline dummy layer, a third amorphous silicon layer pattern including first source and drain resistant contact layers on a predetermined region of the first active layer, second source and drain resistant contact layers on a predetermined region of the second active layer, and a capacitor amorphous dummy layer on the capacitor polycrystalline dummy layer, and a data metal layer pattern including first source/drain electrodes, second source/drain electrodes, and a second capacitor electrode.