Abstract:
A semiconductor device includes a semiconductor wafer including a plurality of first semiconductor die. An opening is formed partially through the semiconductor wafer. A plurality of second semiconductor die is disposed over a first surface of the semiconductor wafer. An encapsulant is disposed over the semiconductor wafer and into the opening leaving a second surface of the semiconductor wafer exposed. A portion of the second surface of the semiconductor wafer is removed to separate the first semiconductor die. An interconnect structure is formed over the second semiconductor die and encapsulant. A thermal interface material is deposited over the second surface of the first semiconductor die. A heat spreader is disposed over the thermal interface material. An insulating layer is formed over the first surface of the semiconductor wafer. A vertical interconnect structure is formed around the first semiconductor die. Conductive vias are formed through the first semiconductor die.
Abstract:
A semiconductor device has a first conductive layer formed over a first substrate. A second conductive layer is formed over a second substrate. A first semiconductor die is mounted to the first substrate and electrically connected to the first conductive layer. A second semiconductor die is mounted to the second substrate and electrically connected to the second conductive layer. The first semiconductor die is mounted over the second semiconductor die. An encapsulant is deposited over the first and second semiconductor die and the first and second substrates. A conductive interconnect structure is formed through the encapsulant to electrically connect the first and second semiconductor die to the second surface of the semiconductor device. Forming the conductive interconnect structure includes forming a plurality of conductive vias through the encapsulant and the first substrate outside a footprint of the first and second semiconductor die.
Abstract:
A semiconductor device has a first conductive layer formed over a first substrate. A second conductive layer is formed over a second substrate. A first semiconductor die is mounted to the first substrate and electrically connected to the first conductive layer. A second semiconductor die is mounted to the second substrate and electrically connected to the second conductive layer. The first semiconductor die is mounted over the second semiconductor die. An encapsulant is deposited over the first and second semiconductor die and the first and second substrates. A conductive interconnect structure is formed through the encapsulant to electrically connect the first and second semiconductor die to the second surface of the semiconductor device. Forming the conductive interconnect structure includes forming a plurality of conductive vias through the encapsulant and the first substrate outside a footprint of the first and second semiconductor die.
Abstract:
A semiconductor device includes a semiconductor wafer including a plurality of first semiconductor die. An opening is formed partially through the semiconductor wafer. A plurality of second semiconductor die is disposed over a first surface of the semiconductor wafer. An encapsulant is disposed over the semiconductor wafer and into the opening leaving a second surface of the semiconductor wafer exposed. A portion of the second surface of the semiconductor wafer is removed to separate the first semiconductor die. An interconnect structure is formed over the second semiconductor die and encapsulant. A thermal interface material is deposited over the second surface of the first semiconductor die. A heat spreader is disposed over the thermal interface material. An insulating layer is formed over the first surface of the semiconductor wafer. A vertical interconnect structure is formed around the first semiconductor die. Conductive vias are formed through the first semiconductor die.