Abstract:
Trenches are formed in a base layer and extend parallel to each other. A gate insulating film is formed on the inner wall of each of multiple trenches. A gate electrode GE is buried in each of the trenches. The source layer is formed in the base layer to a depth less than the base layer. The source layer is disposed between each of the trenches. A second conduction type high concentration layer is formed between the source layer and the trench in a plan view. The trench, the source layer, and the second conduction type high concentration are arranged in this order repetitively in a plan view. One lateral side of the trench faces the source layer and the other lateral side of the trench faces the second conduction type high concentration layer.
Abstract:
A semiconductor substrate has a first surface, a second surface opposing the first surface, and a trench extending from the second surface toward the first surface. A gate electrode is arranged in the trench and has a lower end located at a bottom of the trench and an upper end opposing the lower end. The upper end is located in a first surface side with respect to the second surface. An n-type source region has a first region having a first concentration, and a second region having a second concentration higher than the first concentration. The first region has a portion located in the first surface side with respect to an upper end of the gate electrode. The second region is located in the second surface side with respect to the upper end of the gate electrode.
Abstract:
A semiconductor substrate has a first main surface and a second main surface opposite to each other, and includes a substrate body and an epitaxial layer. A first power MOSFET is formed in a first region defined in the semiconductor substrate, and a second power MOSFET is formed in a second region defined in the semiconductor substrate. A thickness of the epitaxial layer in the first region located between a first main surface's first portion and a second main surface's first portion is less than a thickness of the epitaxial layer in the second region located between a first main surface's second portion and a second main surface's second portion.
Abstract:
A semiconductor device includes a semiconductor substrate, a gate electrode, and a first contact plug. The semiconductor substrate includes a first surface and a second surface. Over the semiconductor substrate, a source region, a drain region, a drift region, and a body region are formed. A first trench in which the gate electrode is buried is formed in the first surface. The first surface includes an effective region and a peripheral region. The first trench extends from the peripheral region over the effective region along a first direction. The gate electrode includes a portion opposed to and insulated from the body region sandwiched between the source region and the drift region. In the peripheral region, the first contact plug is electrically coupled to the gate electrode buried in the first trench such that its longer side is along the first direction when seen in a plan view.
Abstract:
To provide a semiconductor device less affected by noise without making a manufacturing process more complicated and increasing a chip area. The device has a semiconductor substrate having first and second surfaces, a first-conductivity-type drain region on the second surface side in the semiconductor substrate, a first-conductivity-type drift region on the first surface side of a substrate region, a second-conductivity-type base region on the first surface side of the drift region, a first-conductivity-type source region on the first surface of the semiconductor substrate sandwiching a base region between the source and drift regions, a gate electrode opposite to and insulated from the base region, a wiring on the first main surface electrically coupled to the source region, and a first conductive film on the first main surface, opposite to and insulated from the wiring, and electrically coupled to the substrate region.
Abstract:
A trench gate type MISFET and a diode are formed in a semiconductor substrate. First and second trenches are formed in the semiconductor substrate. A gate electrode is formed in the first trench through a gate insulating film. A dummy gate electrode is formed in the second trench through a dummy gate insulating film. A cathode n+-type semiconductor region and an anode p-type semiconductor region are formed in the semiconductor substrate and the second trench is formed so as to surround the n+-type semiconductor region in a planar view. A part of the anode p-type semiconductor region is formed directly below the n+-type semiconductor region, so that a PN junction is formed between the part of the anode p-type semiconductor region and the n+-type semiconductor region. Thereby a diode is formed. The dummy gate electrode is electrically coupled to one of an anode and a cathode.
Abstract:
A semiconductor device includes a base region of a second conduction type provided over a drain region of a first conduction type, an outer peripheral well region of a second conduction type provided to cover the outer peripheral end of the base region and having an impurity concentration lower than that of the base region, a buried electrode buried in the semiconductor substrate not to overlap the outer peripheral well region, plural gate electrodes connected to the buried electrode and buried in the substrate such that each of them is adjacent to a source region, a gate interconnect provided over the substrate to overlap a portion of the outer peripheral well region in a plan view and connected to the buried electrode, and a grounding electrode provided over the substrate and connected to a portion of the outer peripheral well region not overlapping the gate interconnect in a plan view.
Abstract:
Trenches are formed in a base layer and extend parallel to each other. A gate insulating film is formed on the inner wall of each of multiple trenches. A gate electrode GE is buried in each of the trenches. The source layer is formed in the base layer to a depth less than the base layer. The source layer is disposed between each of the trenches. A second conduction type high concentration layer is formed between the source layer and the trench in a plan view. The trench, the source layer, and the second conduction type high concentration are arranged in this order repetitively in a plan view. One lateral side of the trench faces the source layer and the other lateral side of the trench faces the second conduction type high concentration layer.
Abstract:
A semiconductor device has a silicon film for a diode formed on a semiconductor substrate via an insulating film, and first and second wirings formed on an upper layer of the silicon film. The silicon film has a p-type silicon region and a plurality of n-type silicon regions, and each of the plurality of n-type silicon regions is surrounded by the p-type silicon region in a plan view. The p-type silicon region is electrically connected to the first wiring, and the plurality of n-type silicon regions are electrically connected to the second wiring.
Abstract:
An n-channel power MOS transistor having a gate electrode is formed in an element formation region defined in a semiconductor substrate. A p-type guard ring region is formed in a terminal region. A plurality of p-type column regions are formed from the bottom of the p-type base region to a further deeper position. The column region located in the outermost periphery and the p−-type guard ring region are spaced apart from each other by a distance. A gate electrode lead-out portion electrically coupled to the gate electrode is formed in the p−-type guard ring region.