Abstract:
Examples described herein relate to enhancing data communication performance in a wireless communication network including a first subscription associated with a first radio access technology (RAT) and a second subscription associated with a second RAT, where the wireless communication device uses a same radio frequency (RF) resource to communicate over both the first RAT and the second RAT. The first RAT is used, in part, for data operations while the second RAT is used, in part, for voice operations. During idle state voice operations, the RF resource is reallocated from performing data operations to performing idle state voice operations, causing interruptions in the data operations. The wireless communication device adjusts at least one or a duration and an occurrence of the idle state voice operations to reduce the impact on the data operations.
Abstract:
Methods implemented on mobile devices and stored on non-transitory process-readable storage media enable selectively blocking tune-ways to functionalities of a Dual-subscription, Dual-standby (DSDS) mobile device to avoid impairing high-priority calls. An embodiment method implemented in a call manager executing on a processor of the DSDS mobile device may include determining whether a tune-away is blocked based on whether a high-priority call (e.g., VoLTE call) is active on a first functionality, and blocking the tune-away to a second functionality in response to determining that the high-priority call is active on the first functionality. The method may further include allowing the tune-away to the second functionality in response to determining that the high-priority call is not active on the first functionality. In some embodiments, the first functionality may be a packet-switching subscription (e.g., a LTE subscription) and the second functionality may be a circuit-switching subscription (e.g., a GSM subscription).
Abstract:
Examples described herein relate to enhancing data communication performance in a wireless communication network including a first subscription associated with a first radio access technology (RAT) and a second subscription associated with a second RAT, where the wireless communication device uses a same radio frequency (RF) resource to communicate over both the first RAT and the second RAT. The first RAT is used, in part, for data operations while the second RAT is used, in part, for voice operations. During idle state voice operations, the RF resource is reallocated from performing data operations to performing idle state voice operations, causing interruptions in the data operations. The wireless communication device adjusts at least one or a duration and an occurrence of the idle state voice operations to reduce the impact on the data operations.
Abstract:
Aspects described herein relate to configuring a primary component carrier (PCC) and at least one secondary component carrier (SCC) for transmitting uplink communications to one or more nodes of a wireless network using carrier aggregation (CA) in a first subscription of the UE, and transmitting, to at least one of the one or more nodes, a manipulated power headroom report for the at least one SCC based on a migration from an idle state to an active state in a second subscription of the UE.
Abstract:
A method includes receiving a dormancy request from an application executing at a communication device. In response to the dormancy request, a message is sent from the communication device to a radio network controller. The message indicates that a data session has ended. After expiration of a time period following sending of the message, state information is provided to the application. The state information indicates whether the communication device is in a low-power state.
Abstract:
A method includes receiving a dormancy request from an application executing at a communication device. In response to the dormancy request, a message is sent from the communication device to a radio network controller. The message indicates that a data session has ended. After expiration of a time period following sending of the message, state information is provided to the application. The state information indicates whether the communication device is in a low-power state.
Abstract:
Aspects of the present disclosure provide a method for wireless communications that may be performed (e.g., by a user equipment) for location information reporting. The method generally includes determining one or more properties of the UE and adjusting one or more parameters of location information reporting based on the determined one or more properties.
Abstract:
Methods, systems, and devices are described for recovery from a connection disruption of a user equipment (UE) operating in a multi-carrier mode. The UE may establish a first connection with a primary cell and a second connection with a secondary cell while operating in the multi-carrier mode. A determination may be made that a disruption in the connection with the primary cell has occurred, and the UE may perform a connection reestablishment procedure to attempt to reestablish communications. The connection reestablishment routine may prioritize the secondary cell ahead of one or more other cells for attempting to reestablish communications. The prioritization may be based at least in part on the establishment of the second connection in the multi-carrier mode.
Abstract:
Methods and apparatus for enhanced radio resource control (RRC) reestablishment in a communication system include addressing repeated radio link failures (RLFs). For example, the methods and apparatus include incrementing a counter value associated with a first cell based on a detection of a RLF by a user equipment (UE) in a RRC connected state with the first cell. The methods and apparatus further include determining that the counter value meets or exceeds a first barring threshold value within a cell barring evaluation time duration. Additionally, the methods and apparatus include prohibiting the UE from performing an RRC reestablishment procedure with the first cell for a first barring time duration.
Abstract:
Methods, systems, and devices are described for reducing congestion in a wireless communications system. A second connection failure is detected, and a difference between a timestamp of the second connection failure and a timestamp of a first connection failure is calculated. Upon determining that the difference satisfies a first time threshold, information relating to one or more previous connection failures is cleared. A time period is identified. A number of connection failures from a cell that occur during the time period is identified. A determination is made as to whether the number of connection failures satisfies a threshold. Upon determining that the number of connection failures satisfies the threshold, a future connection request may be withheld for a time period.