Abstract:
Systems, methods, and computer readable media are described for processing content color volume messages. In some examples, video data is obtained. The video data can include video data obtained from a camera, encoded video data, or decoded video data. Content color volume information associated with the video data is processed. The content color volume information is indicative of the content color volume of one or more pictures of the video data. For example, the content color volume information includes a first luminance value associated with a minimum luminance of the one or more pictures, a second luminance value associated with a maximum luminance of the one or more pictures, and one or more chromaticity coordinates of one or more color primaries describing a color gamut of the one or more pictures.
Abstract:
A video coder determines, based at least in part on a distance between a current sub-block of a transform coefficient block and a sub-block that contains a last significant coefficient (LSC) of the transform coefficient block, coding contexts for significance flags for transform coefficients of the current sub-block. Furthermore, the video coder entropy codes, based on the coding contexts for the significance flags for the transform coefficients of the current sub-block, the significance flags for the transform coefficients of the current sub-block.
Abstract:
A method of decoding data indicative of a subset of transform coefficients is described. The coefficients are indicative of a block of video data. The method may include determining that no transform coefficient in the subset of transform coefficients has an absolute value greater than one, and, based on the determining, skipping one or more decoding passes on the subset of transform coefficients, the decoding passes relating to decoding level information associated with the subset of transform coefficients.
Abstract:
An apparatus configured to process video data includes a memory and a processor in communication with the memory where the processor is configured to obtain an input picture including a color component having a first color characteristic, obtain a plurality of parameters associated with the color component of at least one sample of the input picture where the plurality of parameters are indicative of pivot points associated with a piece-wise linear function associated with the color component, determine that a value of at least one parameter of the plurality of parameters includes a negative value, apply, on the at least one sample of the input picture, the piece-wise linear function defined with the at least one parameter having a negative value, generate at least one output sample of an output picture including the color component having a second color characteristic based on the application of the piece-wise linear function.
Abstract:
An apparatus for coding video information according to certain aspects includes a memory unit and a processor in communication with the memory unit. The memory unit stores video information associated with a reference layer and a corresponding enhancement layer. The processor obtains residue block information based at least in part on video information associated with the reference layer and the enhancement layer. The processor determines an adjustment transform function based on a transform function associated with the video information. The processor determines a transform block based on the adjusted transform function and the residue block information.
Abstract:
This disclosure proposes techniques for encoding and decoding transform coefficients in a video coding process. In particular, this disclosure proposes techniques determining whether or not to apply a sign data hiding process for a group of transform coefficients, and techniques for applying the sign data hiding process. In one example, this disclosure describes a method for decoding video data comprising determining a block of transform coefficients, determining whether to perform a sign data hiding process for at least one transform coefficient in the block of transform coefficients based on a single variable compared to a threshold, and decoding sign information for the block based on the determination of whether to perform the sign data hiding process.
Abstract:
Provided are methods, apparatus, and computer-readable medium for processing video data by a video coding system that implements ST 2094-10. Video data can include at least two video signals, which can be displayed at the same time in different display regions of a video frame. In various implementations, various techniques can be used to determine an association between a set of color volume parameters and a video signal, and this association can be encoded into a bitstream. Upon decoding of the bitstream, the set of color volume parameters associated with a particular video signal can be used to compress the color volume of the video signal into a range that can be displayed by a particular display device.
Abstract:
A video encoder generates a sequence of sample adaptive offset (SAO) syntax elements for a coding tree block. The SAO syntax elements include regular context-adaptive binary arithmetic coding (CABAC) coded bins for a color component and bypass-coded bins for the color component. None of the bypass-coded bins is between two of the regular CABAC-coded bins in the sequence. The video encoder uses regular CABAC to encode the regular CABAC-coded bins and uses bypass coding to encode the bypass-coded bins. The video encoder outputs the SAO syntax elements in a bitstream. A video decoder receives the bitstream, uses regular CABAC to decode the regular CABAC-coded bins, uses bypass coding to decode the bypass-coded bins, and modifies a reconstructed picture based on the SAO syntax elements.
Abstract:
The techniques of this disclosure are directed toward the use of modified quantization parameter (QP) values to calculate quantized and dequantized transform coefficients of a video block with uniform QP granularity. Conventionally, when a quantization matrix is used during quantization and dequantization of transform coefficients, the quantization matrix entries act as scale factors of a quantizer step-step corresponding to a base QP value, which results in non-uniform QP granularity. To provide uniform QP granularity across all quantization matrix entries, the techniques include calculating modified QP values for transform coefficients based on associated quantization matrix entries used as offsets to a base QP value. At a video decoder, the techniques include calculating dequantized transform coefficients from quantized transform coefficients based on the modified QP values. At a video encoder, the techniques include calculating quantized transform coefficients from transform coefficients based on the modified QP values.
Abstract:
Techniques are described for a video coder (e.g., video encoder or video decoder) that is configured to select a context pattern from a plurality of context patterns that are the same for a plurality of scan types. Techniques are also described for a video coder that is configured to select a context pattern that is stored as a one-dimensional context pattern and identifies contexts for two or more scan types.