Abstract:
A receiver front end architecture for intra band carrier aggregation is disclosed. In an exemplary embodiment, an apparatus includes a first transistor having a gate terminal to receive an input signal, drain terminal to output an amplified signal, and a source terminal connected to a signal ground by a source degeneration inductor. The apparatus also includes a second transistor having a source terminal connected to the drain terminal of the first transistor and a drain terminal connected to a first load. The apparatus also includes a third transistor having a gate terminal connected to the drain terminal of the first transistor, a drain terminal connected to a second load and a source terminal connected to a signal ground.
Abstract:
An area efficient baseband filter is disclosed. In an exemplary embodiment, an apparatus includes a current to voltage (I-V) filter configured to receive an input current signal at an input port and generate a filtered output voltage signal at an output port based on a feedback transconductance. The input current signal comprises an input DC current in addition to a signal current. The apparatus also includes a feedback circuit connected between the output port and the input port, the feedback circuit having at least one transistor configured to couple the input DC current to a signal ground and to provide the feedback transconductance for the I-V filter.
Abstract:
A class AB amplifier may include an input stage, a first folded cascode stage, a second folded cascode stage, and a class AB output stage. In some embodiments, the class AB output stage may provide differential output signals. The common-mode voltage of the differential output signals may be controlled via a correction signal coupled to a selected folded cascode stage. The correction signal may control the common-mode voltage of the differential output signals by altering bias currents within the selected folded cascode stage. The other cascode stage may include bias currents controlled by relatively fixed bias voltages.
Abstract:
A notch filter including an inductor-capacitor tuning circuit is disclosed. The inductor-capacitor tuning circuit may determine a frequency response of the notch filter in accordance with an associated resonant frequency. In some exemplary embodiments, the inductor-capacitor circuit may include a differential inductor divided at a symmetry point and a variable capacitor coupled to the differential inductor at the symmetry point.
Abstract:
One aspect of an apparatus for wireless communications is disclosed. The apparatus includes a controller, a first transceiver, and a second transceiver. The first transceiver is configurable by the controller to support first communications through a cellular network to at least one of a packet-based network and a circuit-switched network. The second transceiver configurable by the controller to operate with the first transceiver to support first communications through the cellular network in a first mode and support second communications through an access point to the packet-based network in a second mode. In an aspect, the second transceiver is further configured to switch from the first mode to the second mode by moving its wireless connection from the cellular network to the access point while maintaining a network-layer connection to the cellular network.
Abstract:
An area efficient baseband filter is disclosed. In an exemplary embodiment, an apparatus includes a current to voltage (I-V) filter configured to receive an input current signal at an input port and generate a filtered output voltage signal at an output port based on a feedback transconductance. The input current signal comprises an input DC current in addition to a signal current. The apparatus also includes a feedback circuit connected between the output port and the input port, the feedback circuit having at least one transistor configured to couple the input DC current to a signal ground and to provide the feedback transconductance for the I-V filter.
Abstract:
Disclosed is circuitry for operating a switch which sees high voltage swings across its source, gate, drain, and bulk terminals. The circuitry generates one or more bias voltages in proportion to an input voltage swing. The one or more bias voltages may be used to bias the gate and bulk terminals to provide reliable and improved turn OFF performance in the switch.
Abstract:
An apparatus includes a first transistor configured to amplify first signal components within a first frequency band of a radio frequency signal, a second transistor configured to amplify second signal components within a second frequency band of the radio frequency signal, and a third transistor configured to amplify third signal components within a third frequency band of the radio frequency signal. The apparatus also includes a degeneration inductor having a first tapping point, a second tapping point, and a third tapping point. The first tapping point is coupled to the first transistor, the second tapping point is coupled to the second transistor, and the third tapping point is coupled to the third transistor.
Abstract:
Disclosed is a circuit having a differential stage comprising a pair or transistors. The transistors are biased by respective bias transistors. Each bias transistor has a respective feedback network configured to reduce transconductance of the bias transistor, to increase a gain of the differential stage.
Abstract:
A method and apparatus for linearizing a baseband filter are provided. The apparatus is configured to, via a first conducting module, receive a first current signal. The apparatus is further configured to, via a converting module, receive a second current signal, generate a voltage signal based on the second current signal, and apply the voltage signal to the first conducting module. An amount of the second current signal received by the converting module is based on an amount of the first current signal flowing through the first conducting module. The apparatus is also configured to, via a second conducting module, control an output current signal based on the voltage signal. The output current signal is controlled to be a linear replica of the first current signal for in-band frequencies.