Abstract:
Techniques for operating a computer system for a vehicle are provided. An example method according to these techniques includes observing usage of at least one component of the computer system by an application to generate an application usage log for the application, deriving behavior vectors from the application usage log, determining whether the application is a distracting application by comparing the behavior vectors to one or more application safety rules, and limiting execution of the application responsive to determining that the application is a distracting application and based on status information associated with the vehicle.
Abstract:
A method is provided for using obtaining a reproducible device identifier from a physically unclonable function. An authentication device may receive a first physically unclonable function (PUF) dataset from the electronic device, the first PUF dataset including characteristic information generated from a physically unclonable function in the electronic device. The authentication device may then identify a pre-stored PUF dataset corresponding to the electronic device. Authentication of the electronic device may be performed by correlating the pre-stored PUF dataset and the first PUF dataset for the electronic device, wherein such correlation is based on a pattern or distribution correlation the pre-stored PUF dataset and the first PUF dataset. Because such correlation is performed on datasets, and not individual points, systematic variations can be recognized by the correlation operation leading to higher correlation than point-by-point comparisons.
Abstract:
One feature pertains to a computing device that includes an input interface, a communication interface, and a processing circuit that is adapted to receive a request from an application to authorize an action and generate a dynamic access code associated with the action. The processing circuit also transmits a message to a secondary display device that includes information data associated with the action and the dynamic access code for display on a display of the secondary display device. The processing circuit authorizes the action received from the application if the dynamic access code is entered into the input interface. Multiple, unique dynamic codes may also be associated with different actions the application may make requests for, which are also transmitted to the secondary display device for display.
Abstract:
One feature pertains to a computing device that includes an input interface, a communication interface, and a processing circuit that is adapted to receive a request from an application to authorize an action and generate a dynamic access code associated with the action. The processing circuit also transmits a message to a secondary display device that includes information data associated with the action and the dynamic access code for display on a display of the secondary display device. The processing circuit authorizes the action received from the application if the dynamic access code is entered into the input interface. Multiple, unique dynamic codes may also be associated with different actions the application may make requests for, which are also transmitted to the secondary display device for display.
Abstract:
An authentication device is provided that authenticates an electronic device based on the responses from distinct types of physically unclonable functions. The authentication device receives a device identifier associated with the electronic device. It then sends one or more challenges to the electronic device. In response, the authentication device receives one or more responses from the electronic device, the one or more responses including characteristic information generated from two or more distinct types of physically unclonable functions in the electronic device.
Abstract:
One feature pertains to generating a unique identifier for an electronic device by combining static random access memory (SRAM) PUFs and circuit delay based PUFs (e.g., ring oscillator (RO) PUFs, arbiter PUFs, etc.). The circuit delay based PUFs may be used to conceal either a challenge to, and/or response from, the SRAM PUFs, thereby inhibiting an attacker from being able to clone a memory device's response.
Abstract:
A method is provided for using obtaining a reproducible device identifier from a physically unclonable function. An authentication device may receive a first physically unclonable function (PUF) dataset from the electronic device, the first PUF dataset including characteristic information generated from a physically unclonable function in the electronic device. The authentication device may then identify a pre-stored PUF dataset corresponding to the electronic device. Authentication of the electronic device may be performed by correlating the pre-stored PUF dataset and the first PUF dataset for the electronic device, wherein such correlation is based on a pattern or distribution correlation the pre-stored PUF dataset and the first PUF dataset. Because such correlation is performed on datasets, and not individual points, systematic variations can be recognized by the correlation operation leading to higher correlation than point-by-point comparisons.
Abstract:
Systems and methods of determining proximity of a mobile device to a target location are described herein. A method as described herein includes identifying a signal sent by the mobile device and received by respective ones of a set of receivers including at least a first receiver and a second receiver, wherein the first receiver and second receiver are positioned collinearly to the target location; determining a first signal-quality metric observed at the first receiver and a second signal-quality metric observed at the second receiver with respect to the signal; computing a ratio associated with distances from the mobile device to the first receiver and the second receiver, respectively, based on the first signal-quality metric and the second signal-quality metric; and determining whether the mobile device is within a proximity region defined in relation to the target location based on the ratio.
Abstract:
Systems and methods of determining proximity of a mobile device to a target location are described herein. A method as described herein includes identifying a signal sent by the mobile device and received by respective ones of a set of receivers including at least a first receiver and a second receiver, wherein the first receiver and second receiver are positioned collinearly to the target location; determining a first signal-quality metric observed at the first receiver and a second signal-quality metric observed at the second receiver with respect to the signal; computing a ratio associated with distances from the mobile device to the first receiver and the second receiver, respectively, based on the first signal-quality metric and the second signal-quality metric; and determining whether the mobile device is within a proximity region defined in relation to the target location based on the ratio.
Abstract:
An authentication device is provided that authenticates an electronic device based on the responses from distinct types of physically unclonable functions. The authentication device receives a device identifier associated with the electronic device. It then sends one or more challenges to the electronic device. In response, the authentication device receives one or more responses from the electronic device, the one or more responses including characteristic information generated from two or more distinct types of physically unclonable functions in the electronic device.