Abstract:
A method and system for managing electrical current within a portable computing device (“PCD”) includes assigning a priority to two or more communications supported by the PCD. A present level of a power supply for the PCD may be monitored by a communications power (“CP”) manager module. Next, the CP manager module may determine if the two or more communications may be transmitted at the present level of the power supply. If the two or more communications cannot be transmitted at the present level of the power supply, then the CP manager module may determine if a timing of at least one of the communications may be adjusted. The CP manager module may also determine a theoretical power level adjustment for at least one of the communications. The two or more communications may be transmitted with any calculated timing off sets and power level adjustments.
Abstract:
A voltage regulator circuit using predictively precharged voltage rails is generally disclosed. For example, the voltage regulator circuit may include a main switching regulator configured to provide a target voltage, the main switching regulator having a first voltage node, a precharge switching regulator configured to provide a precharge voltage, the precharge switching regulator having a second voltage node, the precharge voltage based on a difference between the target voltage and a next target voltage to be provided by the main switching regulator, and a precharge switch circuit configured to selectively couple the second voltage node to an output voltage node based upon a transition from the target voltage to the next target voltage.
Abstract:
A voltage regulator circuit using precharge voltage rails is generally disclosed. For example, the voltage regulator circuit may include a first voltage regulator having a voltage output, an output capacitor coupled to the voltage output, and one or more precharge voltage circuits configured to selectively couple to the voltage output, each of the one or more precharge voltage circuits comprising a capacitor coupled between an output of a precharge voltage regulator and a reference potential.
Abstract:
A method of enabling a battery hot swap in a mobile device includes detecting when a removable first battery will be removed. The removable first battery may power the mobile device. The method includes reducing a system current to a predetermined level in response to the detecting. The method may further include sourcing current from a second battery when the removable first battery is removed.
Abstract:
A voltage regulator circuit using predictively precharged voltage rails is generally disclosed. For example, the voltage regulator circuit may include a main switching regulator configured to provide a target voltage, the main switching regulator having a first voltage node, a precharge switching regulator configured to provide a precharge voltage, the precharge switching regulator having a second voltage node, the precharge voltage based on a difference between the target voltage and a next target voltage to be provided by the main switching regulator, and a precharge switch circuit configured to selectively couple the second voltage node to an output voltage node based upon a transition from the target voltage to the next target voltage.
Abstract:
A circuit comprising an ECM system is provided. The circuit includes a current monitor circuit configured to monitor the ECM system to measure a set of currents supplied to a set of circuits. The circuit also includes an alert circuit configured to generate an alert based on at least one current of the set of currents in comparison to at least one threshold. The circuit further includes a throttle circuit configured to throttle a performance of at least one circuit in order to decrease the current to the at least one circuit based on the generation of the alert. The current used by the circuit may act as an analogue for the system power used. Accordingly, the current used by the circuit may be used to determine when to throttle one or more aspects of the functionality of the circuit.