Abstract:
Methods and apparatus of cell detection include determining whether communication between a user equipment and a serving cell satisfies a serving cell unsuitability condition. The methods and apparatus further include performing one or more autonomous search procedures based on whether the serving cell unsuitability condition has been satisfied. Moreover, the methods and apparatus include conducting cell reselection based on one or more results from the one or more autonomous search procedures, wherein the one or more results indicate at least one suitable cell for reselection.
Abstract:
Certain aspects of the present disclosure provide techniques for an adaptive strategy for enhanced thermal mitigation and overheating signaling. A method that may be performed by a user equipment (UE) includes determining whether one or more trigger conditions are met and following an overheating assistance (OA) configuration received from a network or switching to an internal thermal mitigation configuration based at least in part on the determining.
Abstract:
Certain aspects of the present disclosure provide techniques for time division duplex configuration override. A method that may be performed by a user equipment (UE) includes detecting a period during which a configuration of a first radio access technology (RAT) conflicts with a configuration of a second RAT for a frequency band; and overriding the configuration of the second RAT with the configuration of the first RAT for the period.
Abstract:
Cell reselection for transitioning a user device from a macro cell to a small cell may be performed by comparing a first reselection candidate small cell and a second reselection candidate small cell based on reselection criteria, and selecting a final reselection candidate based on the comparison.
Abstract:
Apparatus and methods are described for identifying candidate cells on at least one frequency, where each of the candidate cells is associated with a cell quality, storing information related to each of the candidate cells in a candidate list, sorting the candidate list, and decoding a master information block (MIB) and one or more system information blocks (SIBs) for a subset of the candidate cells based on the sorting.
Abstract:
The present disclosure presents a method and apparatus for improved reselection during mode transitions at a user equipment (UE). For example, the disclosure presents a method for identifying that a user equipment (UE) has started switching from a first priority scheduling mode to a second priority scheduling mode while making measurements for reselection. In addition, such an example method, may include initiating a mode transition timer in response to the identification and triggering a search for one or more frequencies of the second priority scheduling mode upon expiration of the mode transition timer. As such, an improved reselection during mode transitions at UE may be achieved.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may determine that the UE is connected to a wireless network on a first carrier frequency in a first frequency range that is associated with a lower data rate than a second carrier frequency in a second frequency range. In some aspects, the first frequency range may be associated with a first version of a radio access technology (RAT) and the second frequency range may be associated with a second version of the RAT. The UE may determine a bandwidth metric associated with the first carrier frequency in the first frequency range. The UE may display a first visual indicator associated with the first version of the RAT or a second visual indicator associated with the second version of the RAT based on the bandwidth metric. Numerous other aspects are described.
Abstract:
Certain aspects of the present disclosure provide techniques for releasing an RRC connection by a user equipment (UE). A method that may be performed by the UE includes establishing an RRC connection, determining a time duration for a release timer, resetting the release timer, monitoring the RRC connection, and releasing the RRC connection.
Abstract:
A system and method of performing a handover include detecting an out of sync event while being connected to a current cell, determining whether a measurement report time-to-trigger signal is active, sending, in response to the detection of the out of sync even and the measurement report time-to-trigger signal being active, a first new measurement report and a first special cause flag prior to a next scheduled measurement report to the communication network, receiving a first list of one or more neighboring cells suitable for a handover, identifying a first neighboring cell from the first list for the handover, and attempting to perform the handover from the current cell to the first neighboring cell.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment may receive a radio resource control (RRC) resume message, associated with transitioning the UE from an inactive state to a connected state. The UE may configure, based at least in part on receiving the RRC resume message, the UE with a serving cell common configuration, associated with a serving cell of the UE, received in a system information block (SIB) associated with the serving cell. Numerous other aspects are provided.