Abstract:
A first plasmonic-nanostructure sensor pixel includes a semiconductor substrate and a plurality of metal pillars. The semiconductor substrate has a top surface and a photodiode region therebeneath. The plurality of metal pillars is at least partially embedded in the substrate and extends from the top surface in a direction substantially perpendicular to the top surface. A second plasmonic-nanostructure sensor pixel includes (a) a semiconductor substrate having a top surface, (b) an oxide layer on the top surface, (c) a thin-film coating between the top surface and the oxide layer, and (d) a plurality of metal nanoparticles (i) at least partially between the top surface and the oxide layer and (ii) at least partially embedded in at least one of the thin-film coating and the oxide layer. A third plasmonic-nanostructure sensor pixel includes features of both the first and second plasmonic-nanostructure sensor pixels.
Abstract:
Implementations of a color filter array comprising a plurality of tiled minimal repeating units. Each minimal repeating unit includes at least a first set of filters comprising three or more color filters, the first set including at least one color filter with a first spectral photoresponse, at least one color filter with a second spectral photoresponse, and at least one color filter with a third spectral photoresponse; and a second set of filters comprising one or more broadband filters positioned among the color filters of the first set, wherein each of the one or more broadband filters has a fourth spectral photoresponse with a broader spectrum than any of the first, second, and third spectral photoresponses, and wherein the individual filters of the second set have a smaller area than any of the individual filters in the first set. Other implementations are disclosed and claimed.
Abstract:
Image sensors and devices for phase-detection auto focus processes are provided. A symmetric polarization filter includes a first polarizer defining a first plurality of apertures and a second polarizer adjacent with the first polarizer defining a second plurality of apertures. The first plurality of apertures can be mirror symmetrical with the second plurality of apertures about a lateral axis of the symmetric polarization filter between the first polarizer and the second polarizer. The lateral axis can be defined as an axis of symmetry of the symmetric polarization filter in plane with the first polarizer and the second polarizer.
Abstract:
An imaging device includes a first pixel circuit having a first plurality of photodiodes that includes a phase detection autofocus photodiode with image sensing photodiodes. A first buffer transistor having a first threshold voltage is coupled to the first plurality of photodiodes to generate a first output signal. A second pixel circuit is included having a second plurality of photodiodes that are all image sensing photodiodes. A second buffer transistor having a second threshold voltage is coupled to the second plurality of photodiodes to generate a second output signal. The first threshold voltage is less than the second threshold voltage. A driver is coupled to receive a combination of the first and second output signals to generate a total output signal. An influence of the first output signal dominates the second output signal in the total output signal because the first threshold voltage is less than the second threshold voltage.
Abstract:
An image sensor includes a multi-pixel detector. The multi-pixel detector includes a first pixel formed in a substrate and having a first photodiode region, a second pixel formed in the substrate adjacent to the first pixel and having a second photodiode region, and a microlens above both the first pixel and the second pixel. The microlens includes (a) in a first cross-sectional plane perpendicular to a top surface of the substrate and including both the first and the second photodiode regions, a first height profile having N1 local maxima, and (b) in a second cross-sectional plane perpendicular to the first cross-sectional plane and the top surface and including only one of the first and the second photodiode regions, a second height profile having N2>N1 local maxima.
Abstract:
A phase-detection auto-focus (PDAF) pixel array includes a first pixel and a second pixel. The first pixel, located at a first distance from a center of the PDAF pixel array, includes a first inner photodiode and a first outer photodiode with respect to the center. The first inner photodiode and the first outer photodiode occupy respectively a first inner area and a first outer area. The first inner area divided by the first outer area equals a first ratio. The second pixel, located at a second distance from the center that exceeds the first distance, includes a second inner photodiode and a second outer photodiode with respect to the center. The second inner photodiode and the second outer photodiode occupy respectively a second inner area and a second outer area. The second inner area divided by the second outer area equals a second ratio, which exceeds the first ratio.
Abstract:
A phase-detection auto-focus (PDAF) pixel array includes a first pixel and a second pixel. The first pixel, located at a first distance from a center of the PDAF pixel array, includes a first inner photodiode and a first outer photodiode with respect to the center. The first inner photodiode and the first outer photodiode occupy respectively a first inner area and a first outer area. The first inner area divided by the first outer area equals a first ratio. The second pixel, located at a second distance from the center that exceeds the first distance, includes a second inner photodiode and a second outer photodiode with respect to the center. The second inner photodiode and the second outer photodiode occupy respectively a second inner area and a second outer area. The second inner area divided by the second outer area equals a second ratio, which exceeds the first ratio.
Abstract:
A first plasmonic-nanostructure sensor pixel includes a semiconductor substrate and a plurality of metal pillars. The semiconductor substrate has a top surface and a photodiode region therebeneath. The plurality of metal pillars is at least partially embedded in the substrate and extends from the top surface in a direction substantially perpendicular to the top surface. A second plasmonic-nanostructure sensor pixel includes (a) a semiconductor substrate having a top surface, (b) an oxide layer on the top surface, (c) a thin-film coating between the top surface and the oxide layer, and (d) a plurality of metal nanoparticles (i) at least partially between the top surface and the oxide layer and (ii) at least partially embedded in at least one of the thin-film coating and the oxide layer. A third plasmonic-nanostructure sensor pixel includes features of both the first and second plasmonic-nanostructure sensor pixels.
Abstract:
Embodiments of an apparatus including a pixel array and a color filter array optically coupled to the pixel array, the color filter array including a plurality of tiled minimal repeating units. Processing circuitry is coupled to the pixel array to correct fixed pattern noise (FPN) in an image captured by the pixel array. The processing circuitry corrects the values of pixels that are part of a correction group, and wherein the corrections comprise a combination of a color ratio correction that is based on the ratios of selected colors within the minimal repeating unit, and one or more crosstalk corrections that are based on a chief ray angle (CRA) correction and the color ratio correction.
Abstract:
Half Quad Photodiode (QPD) for improving QPD channel imbalance. In one embodiment, an image sensor includes a plurality of pixels arranged in rows and columns of a pixel array that is disposed in a semiconductor material. Each pixel includes a plurality of subpixels. Each subpixel comprises a plurality of first photodiodes, a plurality of second photodiodes and a plurality of third photodiodes. The plurality of pixels are configured to receive incoming light through an illuminated surface of the semiconductor material. A plurality of small microlenses are individually distributed over individual first photodiodes and individual second photodiodes of each subpixel. A plurality of large microlenses are each distributed over a plurality of third photodiodes of each subpixel. A diameter of the small microlenses is smaller than a diameter of the large microlenses.