Abstract:
An inspection system and methods in which analog image data values (charges) captured by an image sensor are binned (combined) before or while being transmitted as output signals on the image sensor's output sensing nodes (floating diffusions), and in which an ADC is controlled to sequentially generate multiple corresponding digital image data values between each reset of the output sensing nodes. According to an output binning method, the image sensor is driven to sequentially transfer multiple charges onto the output sensing nodes between each reset, and the ADC is controlled to convert the incrementally increasing output signal after each charge is transferred onto the output sensing node. According to a multi-sampling method, multiple charges are vertically or horizontally binned (summed/combined) before being transferred onto the output sensing node, and the ADC samples each corresponding output signal multiple times. The output binning and multi-sampling methods may be combined.
Abstract:
The disclosure is directed to a system and method of managing illumination energy applied to illuminated portions of a scanned wafer to mitigate illumination-induced damage without unnecessarily compromising SNR of an inspection system. The wafer may be rotated at a selected spin frequency for scanning wafer defects utilizing the inspection system. Illumination energy may be varied over at least one scanned region of the wafer as a function of radial distance of an illuminated portion from the center of the wafer and the selected spin frequency of the wafer. Illumination energy may be further applied constantly over one or more scanned regions of the wafer beyond a selected distance from the center of the wafer.
Abstract:
Methods and systems for enhancing the dynamic range of a high sensitivity inspection system are presented. The dynamic range of a high sensitivity inspection system is increased by directing a portion of the light collected from each pixel of the wafer inspection area toward an array of avalanche photodiodes (APDs) operating in Geiger mode and directing another portion of the light collected from each pixel of the wafer inspection area toward another array of photodetectors having a larger range. The array of APDs operating in Geiger mode is useful for inspection of surfaces that generate extremely low photon counts, while other photodetectors are useful for inspection of larger defects that generate larger numbers of scattered photons. In some embodiments, the detected optical field is split between two different detectors. In some other embodiments, a single detector includes both APDs operating in Geiger mode and other photodetectors having a larger range.
Abstract:
First and second images of a semiconductor die or portion thereof are generated. Generating each image includes performing a respective instance of time-domain integration (TDI) along a plurality of pixel columns in an imaging sensor, while illuminating the imaging sensor with light scattered from the semiconductor die or portion thereof. The plurality of pixel columns comprises pairs of pixel columns in which the pixel columns are separated by respective channel stops. While performing a first instance of TDI to generate the first image, a first bias is applied to electrically conductive contacts of the channel stops. While performing a second instance of TDI to generate the second image, a second bias is applied to the electrically conductive contacts of the channel stops. Defects in the semiconductor die or portion thereof are identified using the first and second images.
Abstract:
A back-illuminated image sensor includes a first pixel, a second pixel, and a channel stop situated between the first pixel and the second pixel to isolate the first pixel from the second pixel. The channel stop includes a LOCOS structure and a region of doped silicon beneath the LOCOS structure. The back-illuminated image sensor also includes a first electrically conductive contact that extends through the LOCOS structure and forms an ohmic contact with the region of doped silicon. The first electrically conductive contact may be grounded, negatively biased, or positively biased, depending on the application.
Abstract:
A back-illuminated image sensor includes a first pixel, a second pixel, and a channel stop situated between the first pixel and the second pixel to isolate the first pixel from the second pixel. The channel stop includes a LOCOS structure and a region of doped silicon beneath the LOCOS structure. The back-illuminated image sensor also includes a first electrically conductive contact that extends through the LOCOS structure and forms an ohmic contact with the region of doped silicon. The first electrically conductive contact may be grounded, negatively biased, or positively biased, depending on the application.
Abstract:
Systems configured to inspect a wafer are provided. One system includes an illumination subsystem configured to direct pulses of light to an area on a wafer; a scanning subsystem configured to scan the pulses of light across the wafer; a collection subsystem configured to image pulses of light scattered from the area on the wafer to a sensor, wherein the sensor is configured to integrate a number of the pulses of scattered light that is fewer than a number of the pulses of scattered light that can be imaged on the entire area of the sensor, and wherein the sensor is configured to generate output responsive to the integrated pulses of scattered light; and a computer subsystem configured to detect defects on the wafer using the output generated by the sensor.
Abstract:
The disclosure is directed to image intensifier tube designs for field curvature aberration correction and ion damage reduction. In some embodiments, electrodes defining an acceleration path from a photocathode to a scintillating screen are configured to provide higher acceleration for off-axis electrons along at least a portion of the acceleration path. Off-axis electrons and on-axis electrons are accordingly focused on the scintillating screen with substantial uniformity to prevent or reduce field curvature aberration. In some embodiments, the electrodes are configured to generate a repulsive electric field near the scintillating screen to prevent secondary electrons emitted or deflected by the scintillating screen from flowing towards the photocathode and forming damaging ions.
Abstract:
An inspection system with radiation-induced false count mitigation includes an illumination source configured to illuminate a sample, a detector assembly comprising an illumination sensor configured to detect illumination from the sample, and one or more radiation sensors configured to detect particle radiation, and control circuitry communicatively coupled to the detector. The control circuitry is configured to perform the steps of determining a set of radiation detection events based on one or more radiation signals received from the radiation sensors, determining a set of imaging events based on the illumination signal received from the illumination sensor, comparing the set of radiation detection events to the set of imaging events to generate a set of coincidence events, wherein the set of coincidence events comprises simultaneous imaging and radiation detection events, and excluding the set of coincidence events from the set of imaging events to generate a set of identified defect sites.
Abstract:
Methods and systems for detection of selected defects in relatively noisy inspection data are provided. One method includes applying a spatial filter algorithm to inspection data acquired across an area on a substrate to determine a first portion of the inspection data that has a higher probability of being a selected type of defect than a second portion of the inspection data. The selected type of defect includes a non-point defect. The inspection data is generated by combining two or more raw inspection data corresponding to substantially the same locations on the substrate. The method also includes generating a two-dimensional map illustrating the first portion of the inspection data. The method further includes searching the two-dimensional map for an event that has spatial characteristics that approximately match spatial characteristics of the selected type of defect and determining if the event corresponds to a defect having the selected type.