Abstract:
The disclosure is directed to a system and method of managing illumination energy applied to illuminated portions of a scanned wafer to mitigate illumination-induced damage without unnecessarily compromising SNR of an inspection system. The wafer may be rotated at a selected spin frequency for scanning wafer defects utilizing the inspection system. Illumination energy may be varied over at least one scanned region of the wafer as a function of radial distance of an illuminated portion from the center of the wafer and the selected spin frequency of the wafer. Illumination energy may be further applied constantly over one or more scanned regions of the wafer beyond a selected distance from the center of the wafer.
Abstract:
The disclosure is directed to a system and method of managing illumination energy applied to illuminated portions of a scanned wafer to mitigate illumination-induced damage without unnecessarily compromising SNR of an inspection system. The wafer may be rotated at a selected spin frequency for scanning wafer defects utilizing the inspection system. Illumination energy may be varied over at least one scanned region of the wafer as a function of radial distance of an illuminated portion from the center of the wafer and the selected spin frequency of the wafer. Illumination energy may be further applied constantly over one or more scanned regions of the wafer beyond a selected distance from the center of the wafer.
Abstract:
Methods, systems, and structures for monitoring incident beam position in a wafer inspection system are provided. One structure includes a feature formed in a chuck configured to support a wafer during inspection by the wafer inspection system. The chuck rotates the wafer in a theta direction and simultaneously translates the wafer in a radial direction during the inspection. An axis through the center of the feature is aligned with a radius of the chuck such that a position of the axis relative to an incident beam of the wafer inspection system indicates changes in the incident beam position in the theta direction.
Abstract:
The disclosure is directed to a system and method of managing illumination energy applied to illuminated portions of a scanned wafer to mitigate illumination-induced damage without unnecessarily compromising SNR of an inspection system. The wafer may be rotated at a selected spin frequency for scanning wafer defects utilizing the inspection system. Illumination energy may be varied over at least one scanned region of the wafer as a function of radial distance of an illuminated portion from the center of the wafer and the selected spin frequency of the wafer. Illumination energy may be further applied constantly over one or more scanned regions of the wafer beyond a selected distance from the center of the wafer.
Abstract:
The disclosure is directed to a system and method of managing illumination energy applied to illuminated portions of a scanned wafer to mitigate illumination-induced damage without unnecessarily compromising SNR of an inspection system. The wafer may be rotated at a selected spin frequency for scanning wafer defects utilizing the inspection system. Illumination energy may be varied over at least one scanned region of the wafer as a function of radial distance of an illuminated portion from the center of the wafer and the selected spin frequency of the wafer. Illumination energy may be further applied constantly over one or more scanned regions of the wafer beyond a selected distance from the center of the wafer.
Abstract:
Methods, systems, and structures for monitoring incident beam position in a wafer inspection system are provided. One structure includes a feature formed in a chuck configured to support a wafer during inspection by the wafer inspection system. The chuck rotates the wafer in a theta direction and simultaneously translates the wafer in a radial direction during the inspection. An axis through the center of the feature is aligned with a radius of the chuck such that a position of the axis relative to an incident beam of the wafer inspection system indicates changes in the incident beam position in the theta direction.