Abstract:
A method and device for generating a predicted value of image to generate a predicted value of a current block during image encoding or decoding is disclosed, where the method includes determining a searching scope, wherein a plurality of motion vectors are included in the searching scope, performing up-sampling interpolations on first reference blocks corresponding to the motion vector in the searching scope, in a reference image of the current block using a first filter to obtain up-sampled first reference blocks, obtaining, using the up-sampled first reference blocks, at least one candidate motion vector corresponding to the current block, performing up-sampling interpolations on second reference blocks, corresponding to the at least one candidate motion vector, in the reference image of the current block using a second filter to obtain up-sampled second reference blocks, combining the up-sampled second reference blocks to obtain a predicted value of the current block.
Abstract:
The present invention relates to an image compression method and apparatus, where the image compression method includes a step of performing amplitude decreasing processing on a frequency domain coefficient or a quantization coefficient of a to-be-processed image. The image compression method includes: determining a texture direction of the to-be-processed image; and performing amplitude decreasing processing on the frequency domain coefficient or the quantization coefficient of the to-be-processed image according to the texture direction, where the frequency domain coefficient is a coefficient obtained after the image is transformed, and the quantization coefficient is a coefficient obtained after the frequency domain coefficient is quantized. According to embodiments of the present invention, amplitude decreasing processing is performed on a frequency domain coefficient of a to-be-processed image according to a texture direction of the to-be-processed image, which can improve the compression efficiency without affecting subjective quality of the to-be-processed image.
Abstract:
An intra-frame decoding method includes obtaining, from a video code stream, prediction mode information of a first signal component of a current block; determining a prediction mode of the first signal component of the current block from a prediction mode set of the first signal component of the current block according to the prediction mode information of the first signal component of the current block, where the prediction mode set of the first signal component of the current block includes at least one of a linear model above (LMA) mode and a linear model left (LML) mode; obtaining a predicted value of a first signal component sampling point of the current block; and obtaining a reconstructed value of the first signal component sampling point of the current block according to the predicted value of the first signal component sampling point of the current block.
Abstract:
Embodiments of the present invention disclose a transformation mode encoding and decoding method and apparatus. A correlation between the prediction mode and the transformation mode is used, and an optimal transformation mode candidate set is simplified, thereby saving resources when an index of an optimal transformation mode is encoded in encoding header information. In addition, encoding efficiency is higher when an encoding end elects a transformation mode.
Abstract:
The present invention relates to an image compression method and apparatus, where the image compression method includes a step of performing amplitude decreasing processing on a frequency domain coefficient or a quantization coefficient of a to-be-processed image. The image compression method includes: determining a texture direction of the to-be-processed image; and performing amplitude decreasing processing on the frequency domain coefficient or the quantization coefficient of the to-be-processed image according to the texture direction, where the frequency domain coefficient is a coefficient obtained after the image is transformed, and the quantization coefficient is a coefficient obtained after the frequency domain coefficient is quantized. According to embodiments of the present invention, amplitude decreasing processing is performed on a frequency domain coefficient of a to-be-processed image according to a texture direction of the to-be-processed image, which can improve the compression efficiency without affecting subjective quality of the to-be-processed image.
Abstract:
Embodiments of the present invention provide an encoding or decoding method and apparatus. The method includes: extracting first information in a bitstream; determining a chroma component intra prediction mode according to the first information; when the chroma component intra prediction mode cannot be determined according to the first information, extracting second information in the bitstream; and determining the chroma component intra prediction mode according to the second information, where the first information includes information for indicating whether the chroma component intra prediction mode is a DM mode or an LM mode, the second information is used to indicate a remaining mode as the chroma component intra prediction mode, and the remaining mode is one of available chroma component intra prediction modes other than a mode that may be determined according to the first information.
Abstract:
A method and device for generating a predicted value of image that are mostly used to generate a predicted value of a current block during image encoding or decoding. The method includes: determining a searching scope, wherein multiple motion vectors are included in the searching scope; performing up-sampling interpolations on first reference blocks, corresponding to the motion vector in the searching scope, in a reference image of the current block by using a first filter to obtain up-sampled first reference blocks; by using the up-sampled first reference blocks, obtaining at least one candidate motion vector corresponding to the current block; performing up-sampling interpolations on second reference blocks, corresponding to the at least one candidate motion vector, in the reference image of the current block by using a second filter to obtain up-sampled second reference blocks; combining the up-sampled second reference blocks to obtain a predicted value of the current block.
Abstract:
Embodiments of the present invention provide a motion prediction or compensation method during a video coding and decoding process. A motion prediction or compensation method provided in the embodiments of the present invention includes: acquiring a candidate motion vector set; conducting a refined search for an optimal motion vector based on information of the candidate motion vector set; and performing motion prediction or compensation by using the motion vector acquired by the refined search. This improves coding performance and meanwhile maintains reasonable complexity.
Abstract:
An embodiment of the present invention provides an image coding method, where the coding method includes: performing predictive coding on an image; performing transform coding on the image on which the predictive coding has been performed; performing, by using a quantization matrix, quantization coding on the image on which the transform coding has been performed, where the quantization matrix is a matrix reflecting image quantization step information, the quantization matrix includes an M*N quantization matrix and an N*M quantization matrix, and the N*M quantization matrix is obtained by transposing the M*N quantization matrix; and performing entropy coding on the image on which the quantization coding has been performed, and coding the M*N quantization matrix, so as to generate a code stream. In the present invention, the number of bits required for coding a quantization matrix is effectively saved, thereby improving compression efficiency.
Abstract:
This application provides a picture processing method. The method includes: The encoder side obtains a to-be-processed picture, obtains a plurality of groups of visual sensory experience parameters, and encodes the to-be-processed picture and the plurality of groups of visual sensory experience parameters. At a decoder side, the method includes: The decoder side obtains a to-be-processed picture, obtains a zoom-in operation instruction, obtains one or more groups of visual sensory experience parameters corresponding to one or more local pictures, and separately processes the corresponding local picture based on the one or more groups of visual sensory experience parameters to obtain a processed local picture.