Abstract:
A system is configured for machining a workpiece (100), the workpiece includes an interior surface (110) that defines an internal passage (112). The system includes an electrode (116) located within the internal passage and electrically isolated from the workpiece, an electrolyte supply, a power supply, and a remover. The electrolyte supply is configured for circulating an electrolyte in a gap between the electrode and the workpiece. The power supply is configured for applying a voltage between the electrode and the workpiece to facilitate smoothing the interior surface. The remover is configured for completely removing the electrode from within the internal passage after smoothing the interior surface.
Abstract:
A component formed by an additive manufacturing process includes a body and a first vibration damper. The body is formed from an additive manufacturing material, and defines at least a first cavity completely enclosed within the body. The first vibration damper is disposed within the first cavity. The first vibration damper includes a flowable medium and a first solidified element formed from the additive manufacturing material. The flowable medium surrounds the first solidified element.
Abstract:
A method of making an article of manufacture is provided and includes the steps of spraying a first coating onto a substrate, and depositing a second coating on the first coating by 3-D printing a material disposed in a pattern. The pattern includes ridges disposed at a base surface of a turbine part. Each ridge defined by first and second sidewalls, each sidewall having a first and second end. The ends extend from the base surface, the sidewalls slope toward each other until meeting at second ends of respective first and second sidewalls defining a centerline and a top portion of the ridge. The sidewalls are inclined with substantially equal but opposite slopes with respect to the base surface. The ridges correspond to a back portion of a turbine bucket and are oriented at a first angle with respect to an axis of rotation of the bucket.
Abstract:
A turbine shroud for turbine systems are disclosed. The shrouds may include a unitary body including a support portion coupled directly to a turbine casing of the turbine system, and forward hook(s) and aft hook(s) formed integral with the support portion. The unitary body may also include an intermediate portion formed integral with and extending from the support portion. The intermediate portion may include a non-linear segment extending from the support portion, and a forward segment formed integral with the non-linear segment. The forward segment of the intermediate portion may be positioned axially upstream of the forward hook(s). Additionally the unitary body may include a seal portion formed integral with the intermediate portion, opposite the support portion. The seal portion may include a forward end formed integral with the intermediate portion. The forward end may be positioned axially upstream of the forward hook(s).
Abstract:
A method of binder jet printing a part includes depositing a layer of a powder on a working surface and selectively printing a binder solution comprising a binder into the layer of powder in a first pattern to generate a printed layer. The pattern is representative of a structure of a layer of the part. The method also includes selectively printing a channel support agent solution comprising a channel support agent into the layer of powder to generate a green body. The channel support agent is selectively printed in a second pattern representative of an internal channel of the part. The method further includes heating the green body part above a first temperature to remove the binder and generate a brown body part and heating the brown body part above a second temperature to sinter the powder to generate the part having the internal channel generated from removal of the channel support agent.
Abstract:
A method of binder jet printing a metal part includes depositing a layer of a metal powder on a working surface of a binder jet printer and selectively printing a binder solution having a reversible binder into the layer of metal powder in a pattern to generate a printed layer. The pattern is representative of a structure of a layer of the metal part. The method also includes curing the reversible binder in the printed layer to generate a layer of a green body metal part and heating the green body metal part above a first temperature to remove a substantial portion of the reversible binder and generate a brown body metal part. The reversible binder is thermally decomposed to generate oligomers that remain within and strengthen the brown body metal part. The method further includes heating the brown body metal part above a second temperature to remove the oligomers and sinter the metal powder to generate the metal part. The metal part is substantially free of char residue.
Abstract:
A method that includes additively manufacturing with an additive manufacturing (AM) system a sub-component that has a locator element. Using a control system of the AM system for positioning a first location of the locator element. Selectively placing a portion of another sub-component adjacent to the locator element, based on the positioning. Then attaching the second sub-component to the first sub-component in a region, wherein the region is based on the positioning knowledge from the control system so as to make a component. A component that comprises a first sub-component that has an AM locator element; and a second sub-component attached to the first sub-component, wherein the locator element is attached to the second sub-component within the same additive manufacturing build chamber as the first sub-component.
Abstract:
A collimator grid and a method of fabricating the collimator grid are disclosed. The method includes molding a plurality of plates, each plate includes a plurality of grooves in a first surface, a plurality of fin tips in a second surface disposed opposite to the first surface, plurality of ribs on a first pair of peripheral sides, a plurality of first fiducials formed on the plurality of ribs, and a plurality of second fiducials formed on a second pair of peripheral sides. The method includes machining the second surface to form the plurality of fins having predefined dimensions. Further, the method includes stacking the plurality of plates overlapping each other based on the plurality of first fiducials, and machining the plurality of ribs and first fiducials to form the collimator grid.
Abstract:
A method, medium, and system to receive a specification defining a model of a part to be produced by an additive manufacturing (AM) process; execute an AM simulation on the model of the part to determine a prediction of thermal distortions to the part; execute a topology optimization (TO) to create TO supports that counteract the predicted thermal distortions; generate at least one rule-based support based on a geometry of the part to interface with the part at one or more regions other than the TO supports; combining the TO supports and the at least one rule-based support to generate a set of hybrid supports; save a record of the set of hybrid supports; and transmit the record of the set of hybrid supports to an AM controller to control an AM system to generate a support structure for an AM production of the part.
Abstract:
A method, medium, and system to execute an additive manufacturing (AM) simulation on a model of a part; determine, based on the AM simulation, a prediction of a temperature and displacement distribution in the part at a particular time in the AM process; apply the predicted temperature and displacement distributions in the part as a boundary conditions on a support design space to determine a temperature distribution throughout the support design space; and execute a thermal-structural topology optimization based on the determined temperature and displacement distributions throughout the support design space to determine a distribution of material in the design space for a thermal support structure to interface with the part that optimally reduces a thermal gradient in the part with a minimum of material and results in the generation of an optimized AM support structure.