Abstract:
An apparatus for analyzing microbiome according to an embodiment of the inventive concept includes a light source unit configured to excite first light, a sample unit on which a sample to which the first light is incident is disposed, and a data analysis unit configured to receive second light emitted from the sample unit and analyze microbiome in the sample from the second light. Here, the sample unit includes a conductive polymer structure that surrounds the sample.
Abstract:
Provided is a biosensor including a capillary unit having a capillary channel therein and a reagent disposed in the capillary channel, the reagent being configured to develop colors in a sample, and a measuring unit configured to measure a degree of color development of the sample in the capillary channel.
Abstract:
Provided is a miniaturized photo-acoustic probe for a clinical image capable of effectively measuring a photo-acoustic signal by making an ultrasonic axis and an optical axis parallel. The photo-acoustic probe for a clinical image includes a laser generator configured to generate a laser beam, an ultrasound transducer disposed to be parallel to the laser generator and configured to analyze ultrasound output from an object, first and second reflectors configured to receive ultrasound generated in an axis identical to that of the laser beam generated by the laser generator, and a medium material configured to allow the laser to be transmitted from the first reflector to the object and increase ultrasound reflectivity of the first and the second reflector.
Abstract:
Provided is a personal authentication device based on an auditory brainstem response signal. The personal authentication device includes a signal generator, a signal acquirer, and a signal processor. The signal generator may output an auditory stimulus to an ear of a user, using a sound generator. The signal acquirer may acquire a first reference potential corresponding to a first interval, from a first electrode in close contact with the other ear of the user, and acquire a first evoked potential corresponding to the first interval from a second electrode in close contact with the ear, based on the first reference potential. The signal processor may generate a first auditory brainstem response signal, based on the first reference potential and the first evoked potential, generate authentication data for the user from the first auditory brainstem response signal, and compare the authentication data with registration data to authenticate the user.
Abstract:
Provided is a centrifugal device. The centrifugal device includes a centrifugal part configured to provide an intermediate chamber into which a centrifugal object is put and a driving part disposed on a rotation axis passing through the intermediate chamber.
Abstract:
The present disclosure relates to a microfluidic control system and a microfluidic control method using the same. The microfluidic control system includes: a microfluidic chip including a storage chamber for storing a reaction solution and a receiving chamber communicating with the storage chamber; and a microfluidic control device for controlling the reaction solution inside the microfluidic chip, wherein the microfluidic control device includes: a first roller which is in contact with the microfluidic chip and rotates together with the movement of the microfluidic chip; and a pressurizing protrusion formed on the outer peripheral surface of the first roller, wherein the pressurizing protrusion has a shape corresponding to the storage chamber.
Abstract:
Disclosed is a silicon nano crystal light emitting diode, including: a photoelectric conversion layer formed of a silicon nitride layer including a silicon nano crystal; an electron injection layer formed on the photoelectric conversion layer; and a hole injection layer, which faces the electron injection layer with the photoelectric conversion layer interposed therebetween, has an energy band gap higher than that of the photoelectric conversion layer, and has a refractive index lower than that of a silicon thin film.
Abstract:
Disclosed are a photo-acoustic sensor device and a photo-acoustic sensing method of the same. The sensing method includes providing a source light in a subject and receiving an ultrasonic wave generated in the subject by the source light. The source light may have a wavelength of 1400 nm to 2500 nm in a near-infrared band.
Abstract:
Disclosed herein are a sensor and a system for measuring an analyte using surface plasmon resonance. The sensor may include: an optical fiber including a core layer, and a plasmon resonance layer which is formed to surround an outer surface of the core layer and on which the analyte is disposed; an acoustic wave perturbation generator connected to one side of the optical fiber, and generating acoustic wave perturbation to a mode which enters into the core layer to allow the mode to exit the plasmon resonance layer; and a detector for detecting the mode passing through the inside of the core layer.
Abstract:
A blood glucose prediction method comprising: acquiring a PAS signal by irradiating light to skin of the body, obtaining a photoacoustic image of the skin from the PAS signal, selecting at least one measurement location based on the photoacoustic image; and predicting the blood glucose based on a photoacoustic spectrum of a PAS signal corresponding to the at least one measurement location among the PAS signals, a blood glucose sensor, and a blood glucose prediction system are provided.