Abstract:
A spectrometer includes a substrate; a slit which is provided on the substrate and through which light is incident onto the substrate; a metasurface including nanostructures that is configured to reflect and focus the light incident thereon through the slit, at different angles based on respective wavelengths; and a sensor which is provided on one side of the substrate that is opposite to another side of the substrate at which the metasurface is disposed, and configured to receive the light from the metasurface.
Abstract:
A focusing device includes a substrate and a plurality of scatterers provided at both sides of the substrate. The scatterers on the both sides of the focusing device may correct geometric aberration, and thus, a field of view (FOV) of the focusing device may be widened.
Abstract:
Metasurfaces comprise an array of pillars in a lattice. The dimensions of the pillars and the spacing are varied to obtain desired optical properties. The dispersionless metasurfaces can focus optical light over a broad wavelength range. Specific dispersion profiles for the metasurfaces can be designed. Gratings can be fabricated having similar properties as the array of pillars. Pillars in the metasurfaces can have different cross-section profiles.
Abstract:
An image sensor includes a substrate, thin lenses disposed on a first surface of the substrate and configured to concentrate lights incident on the first surface, and light-sensing cells disposed on a second surface of the substrate, the second surface facing the first surface, and the light-sensing cells being configured to sense lights passing through the thin lenses, and generate electrical signals based on the sensed lights. A first thin lens and second thin lens of the thin lenses are configured to concentrate a first light and a second light, respectively, of the incident lights onto the light-sensing cells, the first light having a different wavelength than the second light.
Abstract:
Methods and systems for controlling the phase of electromagnetic waves are disclosed. A device can consist of a guided resonance grating layer, a spacer, and a reflector. A plurality of devices, arranged in a grid pattern, can control the phase of reflected electromagnetic phase, through refractive index control. Carrier injection, temperature control, and optical beams can be applied to control the refractive index.
Abstract:
Cascaded metasurfaces can control the phase, amplitude and polarization of an electromagnetic beam, shaping it in three dimensional configuration not achievable with other methods. Each cascaded metasurface has dielectric or metallic scatterers arranged in a period array. The shape of the scatterers determines the three dimensional configuration of the output beam and is determined with iterative calculations through computational simulations.
Abstract:
An image sensor includes a substrate, thin lenses disposed on a first surface of the substrate and configured to concentrate lights incident on the first surface, and light-sensing cells disposed on a second surface of the substrate, the second surface facing the first surface, and the light-sensing cells being configured to sense lights passing through the thin lenses, and generate electrical signals based on the sensed lights. A first thin lens and second thin lens of the thin lenses are configured to concentrate a first light and a second light, respectively, of the incident lights onto the light-sensing cells, the first light having a different wavelength than the second light.
Abstract:
Systems and methods for providing optical quantum communication networks based on rare-earth ion quantum bits (qubits) entrapped in solids are presented. According to one aspect a qubit is provided by an 171Yb3+ ion doped into a YVO crystal structure. A nanophotonic cavity fabricated in the doped crystal structure provides a zero-field energy level structure of the ion with optical transitions between ground and excited states at a wavelength longer than 980 nm. A subspace of the qubit is provided by two lower energy levels at the ground states separated by a microwave frequency of about 675 MHz. Addressing of the optical transitions is via first and second lasers and addressing of microwave transitions at the ground and excited states are via respective microwave sources. A single-shot readout sequence of the qubit based on two consecutive readout sequences on the optical transitions separated by a microwave pumping of the ground states is presented. Assignment of a readout state is conditionally based on combined states detected in the two consecutive readout sequences.
Abstract:
Quantitative phase gradient microscopes (QPGM) using metasurface layers including birefringent lenses are disclosed. The birefringent lenses are manufactured by patterning nanoposts on two different transparent substrates or on opposite sides of the same transparent substrate. Methods to generate phase gradient images (PGI) of objects using the described devices are also disclosed.
Abstract:
A spectrometer includes a transparent substrate including a first surface and a second surface that face each other and are substantially parallel to each other; a slit provided on the first surface and through which light is incident onto the transparent substrate; a spectrum optical system including metasurface including a plurality of nanostructures that are two-dimensionally arranged and satisfy a sub-wavelength scattering condition, wherein the metasurface includes a focusing metasurface which includes first nanostructures of the plurality of nanostructures, and is configured to reflect, disperse, and focus the light incident thereon through the slit, at different angles based on respective wavelengths; and a sensor configured to receive the light from the focusing metasurface. When L is a total length of an optical path from the slit to the sensor and D is a thickness of the transparent substrate, L and D satisfy the following inequality: L/D>3.