Abstract:
The present disclosure is directed to an antenna cover comprising a layer including a polymer composition. The polymer composition comprises a polymer matrix containing at least one polymer having a glass transition temperature of about 50° C. or more wherein the polymer matrix constitutes from about 30 wt. % to about 90 wt. % of the polymer composition. The polymer composition exhibits a dielectric constant of about 4 or less and a dissipation factor of about 0.02 or less, as determined at a frequency of 2 GHz. The present disclosure is also directed to a 5G radio frequency communication device and a base station including the aforementioned antenna cover.
Abstract:
A radome (4) intended for protecting an antenna capable of radiating and/or picking up radio waves in a given range of frequencies from 3 MHz to 300 GHz, the radome being provided with a heating system (10) which includes two electric contacts (14, 16) between which are arranged resistive heating elements (12) in the form of parallel strips spaced apart from one another and each having two ends respectively connected to the two electric contacts (14, 16), each of the strips (12) being made from a network of nanoelements comprising metal nanowires (18).
Abstract:
A frequency reflecting unit is provided. The frequency reflecting unit is used as a portion of a frequency reflector. The frequency reflecting unit with a three-dimensional structure includes a metal pattern and at least one via. The metal pattern is disposed on a metal layout layer defined on one side of the frequency reflecting unit. One end of the via is disposed corresponding to the metal pattern. The via forms a non-zero angle with the metal layout layer. The other end of the via is an open circuit.
Abstract:
Disclosed is an antenna desensitization system and a method for designing an antenna desensitization system. The system and method are operative to provide a configuration and positioning of an antenna desensitizer element, with respect to an antenna, to overcome a frequency detuning experienced during operation of such antenna. The antenna desensitizer element comprises one or a combination of more than one decoupling components selected from the group of a frequency selective surface, an electromagnetic band gap structure, a ferromagnetic material, an anisotropic material, a nanomaterial, a dielectric material, and a conductive material. The system and method are particularly suitable for reducing the antenna frequency detuning effects caused by an external agent, such as a user or operator of a mobile electronics device, during operation of such device.
Abstract:
A concealed radar imaging system includes a visible light mirror, a radar device positioned behind the visible light mirror, and a processing circuit coupled to the radar device. The visible light mirror includes a reflective layer configured to reflect visible light, and allow a radar signal to pass therethrough. The radar device is configured to transmit the radar signal, receive a reflection of the radar signal, and generate reflection data based on the reflected radar signal. The processing circuit is configured to control operation of the radar device, receive the reflection data from the radar device, and generate imaging data based on the transmitted radar signal and the reflection data.
Abstract:
A concealed radar imaging system includes a visible light mirror, a radar device positioned behind the visible light mirror, and a processing circuit coupled to the radar device. The visible light mirror includes a reflective layer configured to reflect visible light, and allow a radar signal to pass therethrough. The radar device is configured to transmit the radar signal, receive a reflection of the radar signal, and generate reflection data based on the reflected radar signal. The processing circuit is configured to control operation of the radar device, receive the reflection data from the radar device, and generate imaging data based on the transmitted radar signal and the reflection data.
Abstract:
A radome is provided and includes a dielectric wall and one or more inductive metallic grids embedded in and/or disposed on the dielectric wall. Each of the one or more grids includes compressed grid arms and is tuned to permit bandpass transmission at upper and lower frequencies.
Abstract:
An artificial medium includes: a dielectric layer having a front surface and a back surface; a plurality of first grid lines respectively formed on the front surface and the back surface and extending in a first direction and a plurality of second grid lines extending in a second direction different from the first direction; and electrically conductive elements respectively formed on the front surface and the back surface of the dielectric layer and located in areas where the first grid lines intersect the second grid lines, wherein when an electromagnetic wave propagated in the direction of the thickness of the dielectric layer is incident, a current excited by the electromagnetic wave is increased in a prescribed operating frequency and a current loop is formed in a plane parallel to the direction of the thickness.
Abstract:
A composite material has a host dielectric with an artificial plasmon medium embedded in the host. The artificial plasmon medium has a dielectric function of less than 1, and a plasma frequency selected to result in the permittivity of the composite being substantially equal to 1.
Abstract:
Methods and apparatus for a multilayer millimeter-wave window according to various aspects of the present invention operate in conjunction with a multilayer window that is substantially transparent to a passing millimeter-wave. The window may include multiple perforations in a thermally conductive element to be disposed in the path of the passing wave. A dielectric is positioned between each thermally conductive element and acts as a seal between wave source and an ambient environment. The window may also be configured to conform to a contoured surface or structure.