摘要:
Various Reservoir Computing systems and a method performed by a Reservoir Computing system are provided. A Reservoir Computing system includes a laser for emitting light. The Reservoir Computing system further includes a mirror for reflecting external feedback light back to the laser. The Reservoir Computing system also includes a modulator for modulating the external feedback light reflected back to the laser. The Reservoir Computing system additionally includes a photo-detector for converting a laser output signal to an electrical signal.
摘要:
Integrated optical intensity or phase modulators capable of very low modulation voltage, broad modulation bandwidth, low optical power loss for device insertion, and very small device size are of interest. Such modulators can be of electro-optic or electro-absorption type made of an appropriate electro-optic or electro-absorption material in particular or referred to as an active material in general. An efficient optical waveguide structure for achieving high overlapping between the optical beam mode and the active electro-active region leads to reduced modulation voltage. In an embodiment, ultra-low modulation voltage, high-frequency response, and very compact device size are enabled by a semiconductor modulator device structure, together with an active semiconductor material that is an electro-optic or electro-absorption material, that are appropriately doped with carriers to substantially lower the modulator voltage and still maintain the high frequency response. In another embodiment, an efficient optical coupling structure further enables low optical loss. Various embodiments combined enable the modulator to reach lower voltage, higher frequency, low optical loss, and more compact size than previously possible in the prior arts.
摘要:
Various Reservoir Computing systems and a method performed by a Reservoir Computing system are provided. A Reservoir Computing system includes a laser for emitting light. The Reservoir Computing system further includes a mirror for reflecting external feedback light back to the laser. The Reservoir Computing system also includes a modulator for modulating the external feedback light reflected back to the laser. The Reservoir Computing system additionally includes a photo-detector for converting a laser output signal to an electrical signal. The Reservoir Computing system further includes an analog-to-digital converter for sampling the electrical signal. The Reservoir Computing system also includes a controller for applying a learning algorithm to the sampled electrical signal.
摘要:
A semiconductor device that includes an optical resonator spaced from a waveguide structure to provide for evanescent-wave optical coupling therebetween. The optical resonator includes a closed loop waveguide defined by a vertical thyristor structure. In one embodiment, the vertical thyristor structure is formed by an epitaxial layer structure including complementary (both an n-type and a p-type) modulation doped quantum well interfaces formed between an N+ region and a P+ region.
摘要:
An optical modulator has a ridge optical waveguide and a modulation electrode. The modulation electrode is composed of a signal electrode to which a modulation signal is supplied, a first ground electrode, and a second ground electrode, the signal electrode has a wide portion having a width wider than the width of the uppermost portion of the ridge optical waveguide, the first ground electrode has a central portion ground electrode component provided on a first surface so as to extend along a first direction, and the second ground electrode has a central portion ground electrode component provided on a second surface so as to extend along the first direction. The central portion ground electrode components respectively have a first and a second through-holes, and these through-holes overlap the wide portion of the signal electrode as seen in a planar view.
摘要:
An electro-refraction modulator includes a series of layers with different doping levels surrounding a single-crystal regrown p-n junction implemented in a silicon-on-insulator (SOI) technology. The regrown p-n junction is spatially abrupt and precisely defined, which significantly increases the tuning efficiency of the electro-refraction modulator while maintaining acceptable insertion loss. Consequently, the electro-refraction modulator (such as a resonator modulator or a Mach-Zehnder interferometer modulator) can have high bandwidth, compact size and reduced drive voltage. The improved performance of the electro-refraction modulator may facilitate silicon-photonic links for use in applications such as wavelength-division multiplexing.
摘要:
An optical modulator device directly-coupled to a driver circuit device. The optical modulator device can include a transmission line electrically coupled to an internal VDD, a first electrode electrically coupled to the transmission line, a second electrode electrically coupled to the first electrode and the transmission line. A wave guide can be operably coupled to the first and second electrodes, and a driver circuit device can be directly coupled to the transmission line and the first and second electrodes. This optical modulator and the driver circuit device can be configured without back termination.
摘要:
A method and apparatus for designing a device to operate in a coupling mode, a detection mode, or a reflection mode for incident light. The incident light has a wavelength λ and is incident upon a semiconductor structure of the device at an angle of incidence (θi). A voltage (V) is applied to the device. Each mode may be designed for an ON state and/or OFF state. For the coupling mode and detection mode, the ON state and OFF state is characterized by high and low absorption of the incident light, respectively, by the semiconductor structure in conjunction with the applied voltage V and angle of incidence θi. For the reflection mode, the OFF state and ON states is characterized by a shift in the optical path length of λ/2 and about zero, respectively, in conjunction with the applied voltage V and angle of incidences θi.
摘要:
A semiconductor light intensity modulator utilizing the electric field absorbing effect, includes a light absorption layer which absorbs light due to the electric field absorption effect and a phase correcting semiconductor layer to which an electric field is applied independently from the light absorption layer, having a larger energy band gap than that of the light absorption layer disposed in the light waveguide path or in the vicinity thereof, of the semiconductor light intensity modulator.In this construction, by adjusting the refractive index of the phase correcting semiconductor layer and the length of the light waveguide path, the change in the refractive index in the light absorption layer can be cancelled, whereby a semiconductor light intensity modulator free of phase modulation is obtained.
摘要:
A semiconductor optical guided-wave device which makes quantization and integration possible and which is fine in structure and low in loss is provided, which comprises a semiconductor substrate, at least one ridge type semiconductor optical waveguide formed thereon and at least one pair of electrodes for applying an electric field to the waveguide. The ridge of the optical waveguide is formed by a selective crystal growth process.. The ridge can be realized preferably in such a method that a mask having an opening at a position where a ridge is formed is patterned to a layer on which the ridge is formed, and the crystal growth of a material for forming the ridge is made by a crystal growth technology such as the MOVPE method. The mask to be used for the crystal growth purpose is preferably a thin dielectric film such as, for example, SiO.sub.2 film. The semiconductor optical waveguide preferably comprises grown layers including a first semiconductor cladding layer, a semiconductor guiding and a second semiconductor cladding layer grown in this order and a ridge having a third semiconductor cladding layer and a semiconductor capping layer laminated in this order on the second semiconductor cladding layer.