HIGH PURITY TABLETED ALPHA-ALUMINA CATALYST SUPPORT

    公开(公告)号:US20240293802A1

    公开(公告)日:2024-09-05

    申请号:US18573474

    申请日:2021-11-26

    Applicant: BASF SE

    Abstract: A catalyst support comprising at least 85 wt.-% of alpha-alumina and having a pore volume of at least 0.40 mL/g, as determined by mercury porosimetry, and a BET surface area of 0.5 to 5.0 m2/g, wherein the catalyst support is a tableted catalyst support comprising, based on the total weight of the catalyst support, less than 500 ppmw of potassium. The invention moreover relates to a process for producing a tableted alpha-alumina catalyst support, which comprises i) forming a free-flowing feed mixture comprising i-a) at least one aluminum compound which is thermally convertible to alpha-alumina, the aluminum compound comprising a transition alumina and/or an alumina hydrate; and i-b) 30 to 120 wt.-%, relative to i-a), of a pore-forming material; ii) tableting the free-flowing feed mixture to obtain a compacted body; and iii) heat treating the compacted body at a temperature of at least 1100° C., to obtain the tableted alpha-alumina catalyst support. The invention further relates to a compacted body obtained by tableting a free-flowing feed mixture which comprises, relative to the total weight of the free-flowing feed mixture, a) at least one aluminum compound which is thermally convertible to alpha-alumina, the aluminum compound comprising a transition alumina and/or an alumina hydrate; and b) 30 to 120 wt.-%, relative to a), of a pore-forming material. The invention moreover relates to a shaped catalyst body for producing ethylene oxide by gas-phase oxidation of ethylene, comprising at least 12 wt.-% of silver, relative to the total weight of the catalyst, deposited on the tableted alpha-alumina catalyst support. The invention also relates to a process for producing ethylene oxide by gas-phase oxidation of ethylene, comprising reacting ethylene and oxygen in the presence of the shaped catalyst body. The invention allows for the use of specific pore-forming materials that are particularly suitable for obtaining an advantageous pore structure while allowing for a catalyst support having high purity.

    PROCESS FOR PRODUCING A POROUS ALPHA-ALUMINA CATALYST SUPPORT

    公开(公告)号:US20230256414A1

    公开(公告)日:2023-08-17

    申请号:US18011540

    申请日:2021-06-25

    Applicant: BASF SE

    Abstract: A process for producing a porous alpha-alumina catalyst support, comprising i) preparing a precursor material comprising, based on inorganic solids content, at least 50 wt.-% of a transition alumina having a loose bulk density of at most 600 g/L, a pore volume of at least 0.6 mL/g and a median pore diameter of at least 15 nm; and at most 30 wt.-% of an alumina hydrate; ii) forming the precursor material into shaped bodies; and iii) calcining the shaped bodies to obtain the porous alpha-alumina catalyst support. The catalyst support has a high overall pore volume, thus allowing for impregnation with a high amount of silver, while keeping its surface area sufficiently large so as to provide optimal dispersion of catalytically active species, in particular metal species. The invention further relates to a shaped catalyst body for producing ethylene oxide by gas-phase oxidation of ethylene, comprising at least 15 wt.-% of silver, relative to the total weight of the catalyst, deposited on a porous alpha-alumina catalyst support obtained in the process described above. The invention also relates to a process for preparing a shaped catalyst body as described above comprising impregnating a porous alpha-alumina catalyst support obtained in the process described above with a silver impregnation solution, preferably under reduced pressure; and optionally subjecting the impregnated porous alumina support to drying; and b) subjecting the impregnated porous alpha-alumina support to a heat treatment; wherein steps a) and b) are optionally repeated. The invention further relates to a process for producing ethylene oxide by gas-phase oxidation of ethylene, comprising reacting ethylene and oxygen in the presence of a shaped catalyst body as described above.

    METHOD OF STARTING UP A REACTOR FOR THE OXIDATIVE DEHYDROGENATION OF N-BUTENES

    公开(公告)号:US20190337870A1

    公开(公告)日:2019-11-07

    申请号:US16324315

    申请日:2017-08-08

    Applicant: BASF SE LINDE AG

    Abstract: Process for preparing butadiene from n-butenes, which has a start-up phase and an operating phase and the operating phase of the process comprises the steps: A) provision of a feed gas stream a1 comprising n-butenes; B) introduction of the feed gas stream a1 comprising n-butenes, an oxygen-comprising gas stream a2 and an oxygen-comprising recycle gas stream d2 into at least one oxidative dehydrogenation zone and oxidative dehydrogenation of n-butenes to butadiene, giving a product gas stream b comprising butadiene; C) cooling and compression of the product gas stream b, giving at least one aqueous condensate stream c1 and a gas stream c2 comprising butadiene; D) introduction of the gas stream c2 into an absorption zone and separation of incondensable and low-boiling gas constituents as gas stream d from the gas stream c2 by absorption of the C4 hydrocarbons in an absorption medium, giving an absorption medium stream loaded with C4 hydrocarbons and the gas stream d, and recirculation of the gas stream d as recycle gas stream d2 to the oxidative dehydrogenation zone, where the start-up phase comprises the steps, in the order i) to iv): i) introduction of a gas stream d2′ having a composition corresponding to the recycle gas stream d2 in the operating phase into the dehydrogenation zone and setting of the recycle gas stream d2 to at least 70% of the total volume flow in the operating phase; ii) optionally additional introduction of a steam stream a3 into the dehydrogenation zone; iii) additional introduction of the feed gas stream a1 comprising butenes at a lower volume flow than in the operating phase and raising of this volume flow until at least 50% of the volume flow of the feed gas stream a1 in the operating phase has been attained, with the total gas flow through the dehydrogenation zone corresponding to not more than 120% of the total gas flow during the operating phase; iv) additional introduction, when at least 50% of the volume flow of the feed gas stream a1 comprising butenes in the operating phase has been attained, of an oxygen-comprising stream a2 at a lower volume flow than in the operating phase and raising of the volume flows of the feed gas streams a1 and a2 until the volume flows in the operating phase have been attained, with the total gas flow through the dehydrogenation zone corresponding to not more than 120% of the total gas flow during the operating phase.

Patent Agency Ranking