Abstract:
A negative electrode for a nickel-hydrogen rechargeable battery is a strip-shaped negative electrode, the negative electrode being formed of a core body and a negative mixture layer covering the core body and containing hydrogen-storage alloy particles, including a main section, both sides of which face the positive electrode with the separator intervening therebetween as viewed in a rolled state where the negative electrode forms the electrode group with the positive electrode and the separator, and an outermost circumferential portion and an innermost circumferential portion that are protruding from ends of the main section in a rolling direction and facing the positive electrode with the separator intervening therebetween only with one side, wherein the hydrogen-storage alloy particles contained in the outermost circumferential portion and the innermost circumferential portion have an average diameter larger than an average diameter of the hydrogen-storage alloy particles contained in the main section.
Abstract:
The present invention provides nonapeptides selected from peptides comprising the amino acid sequence of SEQ ID NO:2, 3, 5, 8, 11, or 12; nonapeptides or decapeptides selected from peptides comprising the amino acid sequence of SEQ ID NO:29, 30, 33, 34, 40, or 46; and peptides with cytotoxic T cell inducibility, in which one, two, or several amino acids are substituted or added to the above-mentioned amino acid sequences, as well as pharmaceuticals for treating or preventing tumors, where the pharmaceuticals comprise these peptides. The peptides of this invention can be used as vaccines.
Abstract translation:本发明提供了选自包含SEQ ID NO:2,3,5,8,11或12的氨基酸序列的肽的非肽; 选自包含SEQ ID NO:29,30,33,34,40或46的氨基酸序列的肽的非肽或十肽; 和具有细胞毒性T细胞诱导能力的肽,其中一个,两个或几个氨基酸被取代或加入到上述氨基酸序列中,以及用于治疗或预防肿瘤的药物,其中药物包含这些肽。 本发明的肽可用作疫苗。
Abstract:
A noninvasive method for measuring biological materials which is configured to enable an immediate diagnosis is used in an analytical absorption spectroscopy apparatus including a broadly tunable infrared laser oscillation device, a photodetection device, and an analysis device. The method applies an infrared ray to an analyte organism while tuning the wavelength from the laser oscillation device with or without the ray going through a nonlinear optical device. The photodetection device detects a reflected beam, a transmitted beam, or a scattering beam from the organism or ultrasound generated within the organism by using the detection device. The analysis device analyzes a signal input by the photodetection device.
Abstract:
A hemostatic device includes a flexible band adapted to be wrapped around a patient's limb at a site on the limb where bleeding is to be stopped, a portion for securing the band in a wrapped state to the limb, a curved plate which is made of a material more rigid than the band and at least a portion of which is curved toward the inner peripheral side thereof, a main balloon which is provided on the inner peripheral side of the curved plate and which inflates when a fluid is introduced therein, and a pressing member which is provided between the curved plate and the main balloon so that at least a portion thereof overlaps with the balloon and which is adapted for pressing against the balloon. The device provides an excellent hemostatic effect and prevents numbness and poor circulation in areas peripheral to the site of attachment.
Abstract:
A negative-electrode plate 22 for use in a cylindrical cell, intended to be laid over a positive-electrode plate 21 with a separator 23 interposed between and rolled to form a cylindrical electrode body 20, with the positive-electrode plate 21 inside, the electrode body being arranged in a bottomed cylindrical outer can 10 to form the cylindrical cell, comprises a first negative-electrode part 22a which is to face the positive-electrode plate 21 on either side, with the separator 23 between, when formed into the electrode body 20, and a second negative-electrode part 22b which is to form the innermost circumference of the electrode body 20 and face the positive-electrode plate 21 only on one side, with the separator 23 between, when formed into the electrode body 20, the second negative-electrode part 22b being lower in negative-electrode active material density than the first negative-electrode part 22a.
Abstract:
A negative electrode for a nickel-hydrogen rechargeable battery is a strip-shaped negative electrode, the negative electrode being formed of a core body and a negative mixture layer covering the core body and containing hydrogen-storage alloy particles, including a main section, both sides of which face the positive electrode with the separator intervening therebetween as viewed in a rolled state where the negative electrode forms the electrode group with the positive electrode and the separator, and an outermost circumferential portion and an innermost circumferential portion that are protruding from ends of the main section in a rolling direction and facing the positive electrode with the separator intervening therebetween only with one side, wherein the hydrogen-storage alloy particles contained in the outermost circumferential portion and the innermost circumferential portion have an average diameter larger than an average diameter of the hydrogen-storage alloy particles contained in the main section.
Abstract:
The magnetic tape library device is configured, including: a front magazine and a rear magazine for housing a large number of magnetic tape cartridges; a device main body in which the both magazines are housed in a parallel state in a freely slidable manner; an accessor mechanism for transporting the cartridge taken out from the magazines; and a magnetic tape drive which loads the magnetic tape cartridge and reads/writes data. A magazine pullout mechanism for pulling out the rear magazine and a magazine extracting mechanism for extracting the rear magazine from the device main body are provided.
Abstract:
A solid-state device having: a flip-chip mounted solid-state element; a power receiving/feeding portion having a mounting substrate to allow that a mounting surface of the solid-state element forms substantially the same plane as a surface of the mounting substrate; and an inorganic sealing portion made of an inorganic sealing material having a thermal expansion coefficient equal to that of the power receiving/feeding portion for sealing the solid-state element.
Abstract:
A solid element device includes a solid element, an electric power receiving and supplying part for receiving electric power from and supplying the electric power to the solid element, and an inorganic sealing material for sealing the solid element. The inorganic sealing material includes a low melting glass selected from SiO2—Nb2O5-based, B2O3—F-based, P2O5—F-based, P2O5—ZnO-based, SiO2—B2O3—La2O3-based, and SiO2—B2O3-based low melting glasses.
Abstract translation:固体元件装置包括固体元件,用于从固体元件接收电力并向其提供电力的电力接收和供应部件,以及用于密封固体元件的无机密封材料。 无机密封材料包括选自SiO 2-Nb 2 O 5系,B 2 O 3 -F系,P 2 O 5 -F系,P 2 O 5·ZnO系,SiO2-B2O3-La2O3系,SiO2-B2O3系低 熔化眼镜。
Abstract:
Provided are a piezoelectric material without using lead or an alkali metal, the piezoelectric material having a stable crystal structure in a wide temperature range, high insulation property, and high piezoelectric property, and a piezoelectric element using the piezoelectric material, in which the piezoelectric material is made of a metal oxide having a tetragonal crystal structure and expressed by Ba(SixGeyTiz)O3 (here, 0≦x≦1, 0≦y≦1, and 0≦z≦0.5), the piezoelectric element includes the piezoelectric material and a pair of electrodes sandwiching the piezoelectric material, and at least one of the pair of electrodes is made of SrRuO3 or Ni.