一种基于多机器人协同的航空叶片磨抛装置及控制方法

    公开(公告)号:CN115026683A

    公开(公告)日:2022-09-09

    申请号:CN202210950275.6

    申请日:2022-08-09

    Applicant: 湖南大学

    Abstract: 本发明具体公开了一种基于多机器人协同的航空叶片磨抛装置及控制方法。所述磨抛装置利用输送带和搬运机器人将待磨抛加工航空叶片搬运至卡盘上固定;然后,通过双目相机对卡盘上的航空叶片以及磨抛机器人和并联机器人进行监测,视觉处理模块基于所述监测信息进行数据处理,获取磨抛机器人和并联机器人相对于待磨抛加工航空叶片的位置姿态;最后,利用所构建的磨抛机器人控制器和并联机器人控制器进行协同控制实现待磨抛加工航空叶片的磨抛加工。该磨抛加工方法能够实现航空叶片的自动化磨抛加工,有效提升了航空叶片的磨抛效率和磨抛精度,提高了航空叶片的一致性。

    一种基于多尺度描述子筛除误匹配的三维图像配准方法

    公开(公告)号:CN109389625A

    公开(公告)日:2019-02-26

    申请号:CN201811169910.7

    申请日:2018-10-08

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于多尺度描述子筛除误匹配的三维图像配准方法,该方法通过构造一种新型的多尺度描述子,更好的描述对应关键点的特征,并初步获得对应匹配点;并以此为特征遍历待配准点云中与之有相似多尺度描述子的点云集,极大的提高了点云粗配准的运行效率,减小了计算机的计算量,为点云配准带来了极大的便利;该方法能够在更短的时间里获得更加准确的配准效果,且鲁棒性更好,适用于存在噪声、结构复杂、对配准要求高的精密测量领域。

    一种机器人视觉引导的芯片贴装方法及系统

    公开(公告)号:CN108766894A

    公开(公告)日:2018-11-06

    申请号:CN201810582133.2

    申请日:2018-06-07

    Applicant: 湖南大学

    Abstract: 本发明公开了一种机器人视觉引导的芯片贴装方法及系统,在PCB放置区域和芯片放置区域增设一第二工业相机,机器人吸取芯片移至该第二工业相机处,拍摄吸取后芯片的图像,比较芯片贴装区域与水平轴的夹角和吸取芯片后芯片与水平轴的夹角之间的角度差,使末端执行器在P3处旋转该角度差,进行角度补偿,并且在X和Y轴上进行补偿,改善了在吸取芯片或者吸取后移动过程中产生的滑动误差,提高了贴装精度;同时,本发明采用六轴机器人,因六轴机器人具有更好的自由度和灵活性,实现了腔体类工件内部的芯片贴装,做到柔性生产;再加上第一工业相机设置在机器人手部,更易于运动,使得本发明这种基于位置的视觉控制方法具有更高的灵活性,适用范围更广。

    一种基于矩特征学习神经网络的异形曲面跟踪方法及系统

    公开(公告)号:CN108717262A

    公开(公告)日:2018-10-30

    申请号:CN201810454177.7

    申请日:2018-05-14

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于矩特征学习神经网络的异形曲面跟踪方法及系统,所述方法包括如下步骤:获取期望矩特征向量;获取初始矩特征向量、初始矩特征向量的雅可比矩阵、机械臂的目标关节角速度向量;利用期望矩特征向量、初始矩特征向量以及械臂关节角速度矩阵对B样条基的神经网络控制器进行深度离线训练;机械臂关节角速度向量将当前矩特征向量与所述期望矩特征向量的特征误差输入训练后的B样条基的神经网络控制器得到当前位姿下机械臂关节角速度向量;依据当前位姿下机械臂关节角速度向量控制机械臂运动使机械臂端的相机随之移动。本发明通过上述方法可以实现异形曲面精确定位跟踪。

    一种基于反向高斯差分的钢轨表面缺陷检测方法

    公开(公告)号:CN110009633B

    公开(公告)日:2023-03-24

    申请号:CN201910315903.1

    申请日:2019-04-19

    Applicant: 湖南大学

    Abstract: 本发明公开了一种基于反向高斯差分的钢轨表面缺陷检测方法,所述方法包括以下步骤:S1、通过图像采集装置获取钢轨表面全景图像;S2、利用垂直投影法从所述步骤S1获取的钢轨表面全景图像中提取目标区域部分的钢轨图像;S3、对所述步骤S2提取的钢轨图像进行反向高斯滤波,得到钢轨反向高斯滤波图像;S4、将所述步骤S2提取的钢轨图像与所述步骤S3得到的钢轨反向高斯滤波图像进行差分,得到钢轨差分图像;S5、对所述步骤S4中的钢轨差分图像进行二值化,得到钢轨二值化图像;S6、将所述步骤S5中的钢轨二值化图像进行面积滤波和闭运算,从而完成钢轨表面缺陷区域的检测。本发明适用于各种不同的轨道环境,均能够获得很好的钢轨表面缺陷检测效果。

    一种基于时间函数的三维复杂工件测量方法及系统

    公开(公告)号:CN113192115A

    公开(公告)日:2021-07-30

    申请号:CN202110463262.1

    申请日:2021-04-23

    Applicant: 湖南大学

    Abstract: 本发明提供了一种基于时间函数的三维复杂工件测量方法及系统。所述的一种基于时间函数的三维复杂工件测量方法为:在三维测量配准中,通过估计打磨时间来构建配准误差函数,所述配准误差函数通过对测量点加权,以补偿配准偏移和优化工件各表面的余量分布,并通过非线性优化算法求解,得到扫描点云测量结果。本发明充分考虑了打磨效率、测量点云分布情况及凹凸面不同的打磨余量要求,构建配准误差函数,并高效求解,从而能够在保证打磨质量的条件下,极大的提高机器人打磨的效率,同时对扫描点云的非规则分布、配准初始位置偏离等有较强适应性,该系统结构简单,操作方便。

    一种钢轨表面缺陷视觉检测装置及识别方法

    公开(公告)号:CN109978874A

    公开(公告)日:2019-07-05

    申请号:CN201910259330.5

    申请日:2019-04-02

    Applicant: 湖南大学

    Abstract: 本发明公开了一种钢轨表面缺陷视觉检测装置及识别方法,所述检测装置包括上位机、相机、光源、光源控制器、滚珠丝杠、电机、电机驱动控制器、编码器和支架。所述识别方法包括以下步骤:S1、通过相机获取钢轨表面图像;S2、通过中值滤波法和垂直投影法获取钢轨表面感兴趣区域图像;S3、对钢轨表面感兴趣区域图像进行小波分解;S4、对所述步骤S3中小波分解高频部分进行反向P‑M扩散;S5、对反向P‑M扩散后的钢轨表面图像进行小波重构;S6、通过自适应阈值的Sobel算子对小波重构后的图像进行边缘检测,并对边缘检测后的图像矩阵进行滤波,从而完成检测。本发明能够将图像中真实缺陷的边缘部分突显出来,同时抑制了噪声和线性干扰,具有识别准确率高的特点。

    一种钢轨表面缺陷视觉检测装置及识别方法

    公开(公告)号:CN109978874B

    公开(公告)日:2023-03-14

    申请号:CN201910259330.5

    申请日:2019-04-02

    Applicant: 湖南大学

    Abstract: 本发明公开了一种钢轨表面缺陷视觉检测装置及识别方法,所述检测装置包括上位机、相机、光源、光源控制器、滚珠丝杠、电机、电机驱动控制器、编码器和支架。所述识别方法包括以下步骤:S1、通过相机获取钢轨表面图像;S2、通过中值滤波法和垂直投影法获取钢轨表面感兴趣区域图像;S3、对钢轨表面感兴趣区域图像进行小波分解;S4、对所述步骤S3中小波分解高频部分进行反向P‑M扩散;S5、对反向P‑M扩散后的钢轨表面图像进行小波重构;S6、通过自适应阈值的Sobel算子对小波重构后的图像进行边缘检测,并对边缘检测后的图像矩阵进行滤波,从而完成检测。本发明能够将图像中真实缺陷的边缘部分突显出来,同时抑制了噪声和线性干扰,具有识别准确率高的特点。

    一种基于多机器人协同的航空叶片磨抛装置及控制方法

    公开(公告)号:CN115026683B

    公开(公告)日:2022-10-25

    申请号:CN202210950275.6

    申请日:2022-08-09

    Applicant: 湖南大学

    Abstract: 本发明具体公开了一种基于多机器人协同的航空叶片磨抛装置及控制方法。所述磨抛装置利用输送带和搬运机器人将待磨抛加工航空叶片搬运至卡盘上固定;然后,通过双目相机对卡盘上的航空叶片以及磨抛机器人和并联机器人进行监测,视觉处理模块基于所述监测信息进行数据处理,获取磨抛机器人和并联机器人相对于待磨抛加工航空叶片的位置姿态;最后,利用所构建的磨抛机器人控制器和并联机器人控制器进行协同控制实现待磨抛加工航空叶片的磨抛加工。该磨抛加工方法能够实现航空叶片的自动化磨抛加工,有效提升了航空叶片的磨抛效率和磨抛精度,提高了航空叶片的一致性。

    一种机器人视觉引导的芯片贴装方法及系统

    公开(公告)号:CN108766894B

    公开(公告)日:2019-11-05

    申请号:CN201810582133.2

    申请日:2018-06-07

    Applicant: 湖南大学

    Abstract: 本发明公开了一种机器人视觉引导的芯片贴装方法及系统,在PCB放置区域和芯片放置区域增设一第二工业相机,机器人吸取芯片移至该第二工业相机处,拍摄吸取后芯片的图像,比较芯片贴装区域与水平轴的夹角和吸取芯片后芯片与水平轴的夹角之间的角度差,使末端执行器在P3处旋转该角度差,进行角度补偿,并且在X和Y轴上进行补偿,改善了在吸取芯片或者吸取后移动过程中产生的滑动误差,提高了贴装精度;同时,本发明采用六轴机器人,因六轴机器人具有更好的自由度和灵活性,实现了腔体类工件内部的芯片贴装,做到柔性生产;再加上第一工业相机设置在机器人手部,更易于运动,使得本发明这种基于位置的视觉控制方法具有更高的灵活性,适用范围更广。

Patent Agency Ranking