-
公开(公告)号:CN116474800B
公开(公告)日:2024-10-22
申请号:CN202310411735.2
申请日:2023-04-12
Applicant: 济南大学
IPC: B01J27/185 , B01J23/58 , C07C1/12 , C07C9/04 , C01B32/50
Abstract: 本发明属于催化剂技术领域,具体涉及一种具有花状团簇的介孔催化剂涂层及其制备的催化剂。涂层,包括改性组分和主催化组分;改性组分包括非金属元素改性的γ‑Al2O3和变价金属氧化物或其他具备丰富活性位点的碱土、稀土金属氧化物;主催化组分为具有某种高效催化作用的金属氧化物。采用多步浸渍、一次焙烧的方法,利用多元金属氧化物对应的硝酸盐和氨水等完成涂层成分转换,实现了涂料合成和涂层沉积过程的结合。且利用铵根与弱酸根调控纳米氧化铝形貌获得花状团簇,使涂层具有均匀介孔和大量气体通道。相对于直接用氧化物涂覆,原料成本降低,无需考虑喷涂固化,合成的涂层更薄,时间和经济成本较低,耗能减少。
-
公开(公告)号:CN109734452B
公开(公告)日:2021-08-31
申请号:CN201910196116.X
申请日:2019-03-15
Applicant: 济南大学
IPC: C04B35/58 , C04B35/622 , C04B35/626 , C04B35/64
Abstract: 本发明涉及一种无压烧结制备高致密Ti2AlN陶瓷的方法,属于高纯高致密陶瓷的无压制备技术领域。其特征是以Ti和AlN作为原料,IIIA族和IVA族单质(如单质Si、Sn、In等)作为添加剂,利用少量添加剂夺取金属Ti中固溶的O元素从而使Ti更易和AlN中的Al发生反应,促进Ti2AlN的生成;同时加入添加剂促进烧结体中形成液相,促进物质传递从而促进Ti2AlN陶瓷的致密化。具体步骤包括:以一定含量比的市售钛粉、氮化铝粉和添加剂粉为原料,将研磨球和原料粉加入到球磨罐中,以酒精或水作为球磨介质;一定球磨时间后将上述粉料取出、烘干,采用一定压力的冷等静压成型;将成型后的试块置于无压气氛烧结炉或真空烧结炉中,通以烧结气氛或抽真空,随后以一定的升温速率升至一定温度并保温。本发明为促进Ti2AlN陶瓷的进一步发展应用提供了技术支持,具有重要的实用意义和广泛的社会价值。
-
公开(公告)号:CN109369194B
公开(公告)日:2021-06-15
申请号:CN201811331959.8
申请日:2018-11-09
Applicant: 济南大学
IPC: H01B3/10 , C04B35/584 , C04B35/622 , C04B35/63 , C04B35/632 , C04B38/00 , C04B41/00
Abstract: 本发明公开了一种通过微观结构调控制备低介电、高强度的多孔氮化硅陶瓷的制备工艺,包括如下步骤:凝胶的制备、坯体成型、坯体的干燥、坯体的排胶、坯体的烧结。本发明为了提高β‑Si3N4的转化率,在浆料中添加硼化锆促进α‑Si3N4向β‑Si3N4的转化,可以形成高长径比β‑Si3N4柱状晶相互搭接构成多孔氮化硅陶瓷的孔隙骨架,提高了其强度。本发明提供的多孔氮化硅陶瓷的制备工艺成本低,工艺简单,所制得的多孔氮化硅陶瓷孔隙率高、低介电常数且力学性能好。孔隙率在≥50%,介电常数3.3±0.1,抗弯性能在99.89~131.67MPa。最终多孔氮化硅陶瓷微观结构如附图。
-
公开(公告)号:CN106904985B
公开(公告)日:2020-10-02
申请号:CN201710172776.5
申请日:2017-03-22
Applicant: 济南大学
Abstract: 本发明涉及一种钛‑硅‑碳增强型氧化铝基多相复合材料及其制备方法。将钛粉、氧化铝粉和碳化硅粉按一定体积比称量,以酒精为分散介质,氧化铝球为球磨介质,充分混合后干燥得到混合粉料;将混合粉料置于真空热压炉中以一定压力、升温速率、烧结温度、保温时间进行热压烧结。鉴于热压条件下氧化铝基多相复合材料中的Al2O3和Ti在高温下发生强烈的界面反应,生成钛铝金属间化合物,尤其是TiAl和Ti3Al,会降低材料的性能。本发明通过掺加SiC颗粒,与Ti发生反应,生成新的化合物TiC、Ti3SiC2等增强增韧物质,同时半熔融的Si填充于材料的部分孔隙中,从而获得相对密度高,硬度、韧性、强度大的氧化铝基多相复合材料。
-
公开(公告)号:CN109650852A
公开(公告)日:2019-04-19
申请号:CN201811608753.5
申请日:2018-12-27
Applicant: 济南大学
IPC: C04B35/10 , C04B35/645
Abstract: 本发明涉及一种碳化硅|氧化铝复相陶瓷的制备方法,属于复相陶瓷的制备领域。本发明采用纳米级碳化硅粉和微米级氧化铝粉为原料,首先称取若干组分的原料,混合后以无水乙醇为分散介质,高纯氧化铝球为磨球进行球磨混料。将混合后的料浆在冷冻干燥机中冷干燥,再将干燥后的粉体研磨并过筛,获得混合均匀的粉料,将其装在石墨模具内,使用真空热压炉烧结,制备出圆饼状碳化硅|氧化铝复相陶瓷。该方法的制备工艺操作简便,所制备的碳化硅|氧化铝复相陶瓷,具有相对密度高,弯曲强度高,断裂韧性好,维氏硬度高等优点,且分别超过99.47%,507.82 MPa,4.75 MPa·m1/2,1824.96 Hv。
-
公开(公告)号:CN107498057B
公开(公告)日:2019-01-29
申请号:CN201710604050.4
申请日:2017-07-24
Applicant: 济南大学
Abstract: 本发明公开了一种层状铝碳化硼复合材料及其制备方法,包括分布在中轴面一侧的n层层状结构,以及,对称分布在中轴面另一侧的n层层状结构,n≥2;层状结构由铝粉和碳化硼粉制成,按照原料的体积百分比计,层状结构中铝粉的含量由内向外逐层递增,由50vol.%递增至100vol.%;碳化硼粉的含量由内向外逐层递减,由50vol.%递减至0vol.%;中轴面两侧原料变化一致。该层状铝碳化硼复合材料当外层遭到破坏,这种变形也会扩大裂纹的传播路径,吸收更多的断裂能,从而保证了材料整体的强度和韧性。
-
公开(公告)号:CN108315629A
公开(公告)日:2018-07-24
申请号:CN201810148011.2
申请日:2018-02-13
Applicant: 济南大学
Abstract: 本发明涉及一种Al/SiC金属陶瓷复合材料的制备方法,属于金属陶瓷复合材料制备技术领域。具体步骤为:分别称取铝粉和碳化硅粉,放置于研磨体中,采用行星式球磨机对混合物料进行球磨,球磨后物料在真空干燥箱内进行干燥,干燥后物料研磨后使粉料全部过100目筛备用;将粉磨好的物料置于放电等离子烧结所用的石墨模具中按进行烧结。本发明利用放电等离子烧结技术,在高温高压下制备Al/SiC金属陶瓷复合材料,打破了Al/SiC金属陶瓷复合材料传统制备方法;制备的Al/SiC金属陶瓷复合材料体系相对于铝基金属来说,它有更高的使用温度,而且铝/碳化硅有更好的耐磨性能、断裂韧性、耐腐蚀性能,拓宽了铝/碳化硅的应用范围。
-
公开(公告)号:CN108218330A
公开(公告)日:2018-06-29
申请号:CN201810103287.9
申请日:2018-02-01
Applicant: 济南大学
IPC: C04B28/02 , C04B111/28 , C04B111/40
Abstract: 本发明涉及一种脱硫石膏‑钢渣膨胀珍珠岩发泡保温板的制备方法:(1)将成型模板进行预热;(2)将脱硫石膏、钢渣、水泥和发泡材料按比例混合均匀,将水和外加剂按比例混合均匀;(3)将步骤(2)中的粉状混合物料和液体混合物料混合在一起,通过搅拌得到粘稠状复合浆体;(4)将膨胀珍珠岩按比例与步骤(3)中得到的复合浆体搅拌混合2‑4min,直至膨胀珍珠岩表面均匀包裹一层复合浆体材料,得到轻质预压料;(5)在下模板上自下往上依次铺设下层玻纤网布、步骤(4)得到的轻质预压料和上层玻纤网布,并通过上模板进行加压,压缩形成板坯,压缩比为1.1~2.6;(6)上模板在预热温度下对板坯保压30~90min,使板坯定型;(7)脱模。
-
公开(公告)号:CN106119583A
公开(公告)日:2016-11-16
申请号:CN201610500096.7
申请日:2016-06-30
Applicant: 济南大学
Abstract: 本发明涉及一种无压烧结钛/氧化铝梯度复合材料的制备方法。本发明通过改变钛和氧化铝粉料的配比,经球磨混合得到不同配比的钛/氧化铝粉料,粉料过筛后分别将不同配比的粉料以设定厚度逐层填充在石墨模具中进行初压,初压成型后的坯体经冷等静压处理使用真空烧结炉无压烧结。本发明通过控制不同钛和氧化铝的配比,以及单层粉料的填充厚度得到不同强度和断裂韧性的钛/氧化铝梯度复合材料;对最上层和最下层钛和氧化铝的配比的控制,实现制备出上下底面导电性有差异的材料,以满足实际使用要求。
-
公开(公告)号:CN105712635A
公开(公告)日:2016-06-29
申请号:CN201610056543.4
申请日:2016-01-28
Applicant: 济南大学
IPC: C03C10/14 , C03B19/02 , H01L31/055
CPC classification number: Y02E10/52 , C03C10/0009 , C03B19/02 , H01L31/055
Abstract: 本发明公开了一种Eu3+/Yb3+共掺杂硅酸盐微晶玻璃及其制备方法和应用,该微晶玻璃掺有Eu3+/Yb3+,所含晶体为六方相Ba4La6O(SiO4)6。本发明微晶玻璃晶相组成简单、析晶易控,玻璃成玻能力好,合成所需原料易得,并且熔制时挥发量较氟化物少,对人体健康和环境危害小。该微晶玻璃能将Eu3+所吸收的高能短波光子(300~480 nm)转换成~1100 nm左右的低能光子,可用于提高硅基太阳能电池效率,作为下转换发光材料具有很好的应用前景。
-
-
-
-
-
-
-
-
-