一种基于富氧空位NiCo2O4电致化学发光传感器的制备方法

    公开(公告)号:CN111766288B

    公开(公告)日:2022-10-28

    申请号:CN202010571487.4

    申请日:2020-06-22

    Applicant: 济南大学

    Abstract: 本发明涉及一种基于富氧空位NiCo2O4电致化学发光传感器的制备方法,属于新型纳米材料领域与生物传感技术领域;本发明以N‑(4‑氨丁基)‑N‑乙基异鲁米诺(ABEI)作为还原剂制备钯功能化富氧空位NiCo2O4(ABEI@Pd/NiCo2O4)作为传感基底,研制一种免疫传感器并应用于非小细胞肺癌疾病标志物CYFRA 21‑1的实际样品检测,通过硼氢化钠常温还原法制得富氧空位NiCo2O4,高浓度氧空位可改善NiCo2O4电子结构,增强其电子迁移率,富氧空位NiCo2O4具有更加优异的电化学活性,可高效催化电解液中的溶解氧O2转化为超氧阴离子自由基O2•−,从而增强ABEI与O2•−之间的电致化学发光反应实现信号高效稳定输出,该传感器检出限至20 pg/mL,线性范围50 pg/mL‑50 ng/mL,在非小细胞肺癌早期诊断中具有明显的潜在应用价值。

    一种基于CeO2@SnS2促进鲁米诺电致化学发光传感器的制备方法

    公开(公告)号:CN110455786B

    公开(公告)日:2021-08-20

    申请号:CN201910787978.X

    申请日:2019-08-26

    Applicant: 济南大学

    Abstract: 本发明涉及一种基于CeO2@SnS2促进鲁米诺电致化学发光传感器的制备方法,属于新型纳米材料领域与生物传感技术领域;本发明基于电致化学发光ECL技术,首次以铁蛋白共价交联鲁米诺(Ft‑luminol)作为信号源,以CeO2@SnS2作为促进剂,利用CeO2@SnS2对鲁米诺优异的协同催化作用对检测信号进行有效放大,提出了一种制备简单、成本低、反应能耗低、绿色环保的生物传感器制备方法,并将其应用于降钙素原的实际样品检测,检出限低至1.6 fg/mL,线性范围宽至5 fg/mL‑100 ng/mL,灵敏度高、重现性好,具有较大的潜在应用价值。

    一种基于PbS/Co3O4复合物信号减弱型光电化学免疫传感器的制备方法

    公开(公告)号:CN110346438B

    公开(公告)日:2021-06-25

    申请号:CN201910655382.4

    申请日:2019-07-19

    Applicant: 济南大学

    Abstract: 本发明涉及一种基于硫化铅‑四氧化三钴复合物(PbS/Co3O4)的光电化学降钙素原传感器的制备方法及应用。本发明具体是在氧化铟锡(ITO)导电玻璃上将黑二氧化钛纳米颗粒(B‑TiO2 NPs)和碘氧铋纳米片(BiOI NSs)及金纳米颗粒(Au NPs)复合作为基底材料,形成的敏化结构可增加光的吸收范围,促进光生电子空穴的分离效率,同时用于负载抗体。制备的PbS/Co3O4复合物与基底材料竞争光源和空穴牺牲剂,构建了一种基于信号减弱型的光电化学免疫传感器,实现了对降钙素原的灵敏检测,该方法对早期诊断和监测细菌炎性疾病感染具有重要意义。

    一种基于富氧空位CeO2电致化学发光免疫传感器的制备方法及应用

    公开(公告)号:CN111766289A

    公开(公告)日:2020-10-13

    申请号:CN202010571720.9

    申请日:2020-06-22

    Applicant: 济南大学

    Abstract: 本发明涉及一种基于富氧空位CeO2电致化学发光免疫传感器的制备方法及应用,属于新型纳米材料领域与生物传感技术领域;首次提出一种高浓度氧空位增强CeO2电致化学发光性能的方法,通过硼氢化钠常温还原法制得富氧空位CeO2,高浓度氧空位可改善CeO2电子结构,显著增强其电子迁移率,与传统方法制备的CeO2纳米材料相比,富氧空位CeO2具有更高的发光效率,基于纳米金优异的导电性与生物相容性,本发明以纳米金功能化富氧空位CeO2作为信号源研制一种无标记型免疫传感器并应用于非小细胞肺癌疾病标志物CYFRA 21-1的实际样品检测,检出限至25 pg/mL,线性范围50 pg/mL-50 ng/mL,在非小细胞肺癌早期诊断中具有明显的潜在应用价值。

    一种电催化氮气还原催化剂MoS2-Fe(OH)3/CC的制备方法

    公开(公告)号:CN111001420A

    公开(公告)日:2020-04-14

    申请号:CN201911278659.2

    申请日:2019-12-13

    Applicant: 济南大学

    Abstract: 随着现代工业的发展,人们对能源的需求越来越高,合成氨技术越来越成为工业发展的命门,氮肥料的迫切需求以及哈伯-博施法的反应条件过于苛刻、转化率低使氨的制备成为当今世界发展必须解决的重大难题。由于重金属催化剂价格昂贵,资源稀缺,因此,生产非贵金属的催化剂用于电催化分解N2饱和的电解液实现氮还原制氨的研究备受关注,近几年在能源领域一直是最大热门。本发明提供了一种在碳布上水热合成MoS2后用电沉积法电沉积上Fe(OH)3的制备方法及其电催化氮还原应用。

    一种基于二氧化铈和纳米银双增强苝四羧酸发光的电化学发光传感器的构建方法

    公开(公告)号:CN110687175A

    公开(公告)日:2020-01-14

    申请号:CN201911092291.0

    申请日:2019-11-11

    Applicant: 济南大学

    Abstract: 本发明公开一种基于二氧化铈和纳米银双增强苝四羧酸发光的电化学发光传感器的构建方法。在本发明中,作为发光体的苝四羧酸PTCA直接负载在碳纳米管MWCNTs表面,形成PTCA@MWCNTs纳米复合材料。二氧化铈CeO2和纳米银AgNPs用作苝四羧酸-过硫酸钾PTCA-K2S2O8体系中新型共反应促进剂催化共反应剂K2S2O8产生更多的硫酸根自由基SO4•-,极大增强了PTCA的发光强度。不同浓度的降钙素原PCT可结合不同量的二抗标记物金杂化的苝四羧酸-碳纳米管Ab2-Au-PTCA@MWCNTs,从而引起传感器发光强度变化,实现对PCT的检测。本发明对PCT检测的线性范围为50 fg/mL-100 ng/mL,检测限为16 fg/mL。

    一种信号增强型的癌胚抗原快速检测电化学发光传感方法

    公开(公告)号:CN116626134A

    公开(公告)日:2023-08-22

    申请号:CN202310628773.3

    申请日:2023-05-31

    Applicant: 济南大学

    Abstract: 本发明涉及一种信号增强型的癌胚抗原快速检测电化学发光传感方法,属于新型功能材料研发,新型传感器构建技术领域。luminol@Au@Ni‑Rh NCs作为荧光探针,有着优异的发光效率。Ti3C2Tx MXene具有高比表面积、良好的导电性和易于修饰的活性位点,有效减少载流子的迁移距离和迁移速率。MoS1.93和TiO1.96具有较多的氧空位和缺陷,具有优异的电催化性能,有效促进H2O2分解产生更多的活性氧。基于Ti3C2Tx MXene@TiO1.96@MoS1.93基底材料的信号放大作用构建信号增强型电化学发光免疫传感器以CEA为模型分析物,构建免疫传感器,实现了对CEA的检测,检测范围为0.1 fg·mL‑1~100 ng·mL‑1,检测限为46.4 fg·mL‑1。本发明专利解决了传统的CEA检测方式无法进行低浓度精准检测的难题,该技术将为今后的临床医学诊断提供强有力的依据。

    一种用于检测细胞角蛋白的光电化学免疫传感器的制备方法

    公开(公告)号:CN114062452A

    公开(公告)日:2022-02-18

    申请号:CN202111431336.X

    申请日:2021-11-29

    Applicant: 济南大学

    Abstract: 本发明涉及基于了一种基于信号极性转换策略的抗原在下型光电化学免疫传感器,用于检测细胞角蛋白。3,4,9,10‑苝四甲酸作为基础光敏材料,是一种含有五个苯核的共轭有机染料,具有优良的成膜性和光学性能。二氧化锡敏化的3,4,9,10‑苝四甲酸进一步提高了光电化学免疫传感器的基础信号和稳定性。此外,具有亲和素功能化的铟铜作为光电化学传感器的信号探针可以将基极阳极光电流转换为阴极光电流。因此,光电化学传感器实现了标记前后的光电流极性转换。使用具有亲和素功能的硫铟铜,细胞角蛋白检测前后光电流的极性发生变化,因此所制备的光电化学免疫传感器具有高灵敏度。实现了对细胞角蛋白的超灵敏检测。其检测限为3.5 fg/mL。

    一种基于二氧化铈和纳米银双增强苝四羧酸发光的电化学发光传感器的构建方法

    公开(公告)号:CN110687175B

    公开(公告)日:2022-06-10

    申请号:CN201911092291.0

    申请日:2019-11-11

    Applicant: 济南大学

    Abstract: 本发明公开一种基于二氧化铈和纳米银双增强苝四羧酸发光的电化学发光传感器的构建方法。在本发明中,作为发光体的苝四羧酸PTCA直接负载在碳纳米管MWCNTs表面,形成PTCA@MWCNTs纳米复合材料。二氧化铈CeO2和纳米银AgNPs用作苝四羧酸‑过硫酸钾PTCA‑K2S2O8体系中新型共反应促进剂催化共反应剂K2S2O8产生更多的硫酸根自由基SO4•‑,极大增强了PTCA的发光强度。不同浓度的降钙素原PCT可结合不同量的二抗标记物金杂化的苝四羧酸‑碳纳米管Ab2‑Au‑PTCA@MWCNTs,从而引起传感器发光强度变化,实现对PCT的检测。本发明对PCT检测的线性范围为50 fg/mL‑100 ng/mL,检测限为16 fg/mL。

Patent Agency Ranking