一种蒸汽发生器传热管管板缝隙区涡流精准测量方法

    公开(公告)号:CN106932467B

    公开(公告)日:2020-08-21

    申请号:CN201511019152.7

    申请日:2015-12-30

    Abstract: 本发明属于涡流测量领域,具体涉及一种蒸汽发生器传热管管板缝隙区涡流精准测量方法。包括步骤一:设置涡流仪器的检测频率、步骤二:读入标定试验件检测数据、步骤三:读入一根传热管涡流检测数据、步骤四:对步骤三中确定的检测范围内的信号进行峰峰值测量或者最大水平分量测量以确定信号拐点、步骤五:管板区、起胀点位置的精确校准、步骤六:依据采样率、标定曲线以及步骤四所得的管板区、起胀点位置计算管板缝隙区尺寸、胀管平均内径、过胀点检测、欠胀点位置、步骤七:重复步骤三至步骤六,得到蒸汽发生器全部传热管的管板缝隙区尺寸、胀管平均内径、过胀点检测、欠胀点位置。

    一种蒸汽发生器传热管管板缝隙区涡流精准测量方法

    公开(公告)号:CN106932467A

    公开(公告)日:2017-07-07

    申请号:CN201511019152.7

    申请日:2015-12-30

    Abstract: 本发明属于涡流测量领域,具体涉及一种蒸汽发生器传热管管板缝隙区涡流精准测量方法。包括步骤一:设置涡流仪器的检测频率、步骤二:读入标定试验件检测数据、步骤三:读入一根传热管涡流检测数据、步骤四:对步骤三中确定的检测范围内的信号进行峰峰值测量或者最大水平分量测量以确定信号拐点、步骤五:管板区、起胀点位置的精确校准、步骤六:依据采样率、标定曲线以及步骤四所得的管板区、起胀点位置计算管板缝隙区尺寸、胀管平均内径、过胀点检测、欠胀点位置、步骤七:重复步骤三至步骤六,得到蒸汽发生器全部传热管的管板缝隙区尺寸、胀管平均内径、过胀点检测、欠胀点位置。

    一种基于涡流信号特征的热交换管缺陷检测方法

    公开(公告)号:CN106932469B

    公开(公告)日:2020-06-19

    申请号:CN201511023309.3

    申请日:2015-12-30

    Abstract: 本发明属于无损检测技术领域,具体涉及一种基于涡流信号特征的热交换管缺陷检测方法。包括如下步骤:依据各类涡流信号进行信号特征分析,形成特征库;将上述信号特征组合形成缺陷识别规则;读入传热管涡流检测数据,进行涡流信号归一化与信号标定;对结构进行定位;按照上步结构定位结果,将整根传热管划分为不同的结构区域和自由区域;依据每一类缺陷识别规则包括的规则单元,对信号进行测量并匹配其特征范围,当某类缺陷识别规则中包括的所有规则单元都匹配成功,则发现某类缺陷;历史数据比对分析;全自动分析流程:重复步骤三到步骤七,直到完成整个蒸汽发生器传热管缺陷检测工作。本发明在满足涡流检测需求同时大大节约人力成本和检测时间。

    一种基于涡流信号特征的热交换管缺陷检测方法

    公开(公告)号:CN106932469A

    公开(公告)日:2017-07-07

    申请号:CN201511023309.3

    申请日:2015-12-30

    Abstract: 本发明属于无损检测技术领域,具体涉及一种基于涡流信号特征的热交换管缺陷检测方法。包括如下步骤:依据各类涡流信号进行信号特征分析,形成特征库;将上述信号特征组合形成缺陷识别规则;读入传热管涡流检测数据,进行涡流信号归一化与信号标定;对结构进行定位;按照上步结构定位结果,将整根传热管划分为不同的结构区域和自由区域;依据每一类缺陷识别规则包括的规则单元,对信号进行测量并匹配其特征范围,当某类缺陷识别规则中包括的所有规则单元都匹配成功,则发现某类缺陷;历史数据比对分析;全自动分析流程:重复步骤三到步骤七,直到完成整个蒸汽发生器传热管缺陷检测工作。本发明在满足涡流检测需求同时大大节约人力成本和检测时间。

    一种针对容器焊缝检查机械手运动的控制系统及控制方法

    公开(公告)号:CN103707304B

    公开(公告)日:2016-02-03

    申请号:CN201310703645.7

    申请日:2013-12-19

    Abstract: 一种针对容器焊缝检查机械手运动的控制系统及控制方法,本发明涉及检查机械手运动的控制系统及控制方法。本发明是要解决国内现有技术没有提供对容器焊缝检查机械手运动轨迹的规划方法。检查机运动控制系统包括:检查机运动控制系统由人机交互子系统、电源管理子系统、运动控制子系统与机械手子系统组成;规划设计5种检查轨迹:筒体焊缝检查轨迹、接管焊缝检查轨迹、交贯面焊缝检查轨迹、交管圆角焊缝检查轨迹以及底封头焊缝检查轨迹,然后通过这5种轨迹生成容器焊缝处机械手的运动轨迹,人机交互子系统根据所述运动轨迹上的致密的运动点通过所述的运动控制子系统控制机械手完成检测任务。本发明应用于核电、化工等领域的大型高危容器的检测。

    一种针对容器焊缝检查机械手运动的控制系统及控制方法

    公开(公告)号:CN103707304A

    公开(公告)日:2014-04-09

    申请号:CN201310703645.7

    申请日:2013-12-19

    Abstract: 一种针对容器焊缝检查机械手运动的控制系统及控制方法,本发明涉及检查机械手运动的控制系统及控制方法。本发明是要解决国内现有技术没有提供对容器焊缝检查机械手运动轨迹的规划方法。检查机运动控制系统包括:检查机运动控制系统由人机交互子系统、电源管理子系统、运动控制子系统与机械手子系统组成;规划设计5种检查轨迹:筒体焊缝检查轨迹、接管焊缝检查轨迹、交贯面焊缝检查轨迹、交管圆角焊缝检查轨迹以及底封头焊缝检查轨迹,然后通过这5种轨迹生成容器焊缝处机械手的运动轨迹,人机交互子系统根据所述运动轨迹上的致密的运动点通过所述的运动控制子系统控制机械手完成检测任务。本发明应用于核电、化工等领域的大型高危容器的检测。

    一种蒸汽发生器传热管内壁铁磁性附着层厚度测量方法

    公开(公告)号:CN118242967A

    公开(公告)日:2024-06-25

    申请号:CN202211663865.7

    申请日:2022-12-23

    Abstract: 本发明具体涉及一种蒸汽发生器传热管内壁铁磁性附着层厚度测量方法,包括如下步骤:确定蒸汽发生器传热管内壁铁磁性附着层厚度与蒸汽发生器传热管涡流信号之间的当量关系;对蒸汽发生器传热管历次涡流信号进行数据处理,使得蒸汽发生器传热管历次涡流信号同一检测区域每个数据的TTS区域最大测量幅值相等;对蒸汽发生器传热管历次涡流信号的所有数据点进行最大幅值测量,获得蒸汽发生器传热管历次涡流信号对应的涡流幅值;根据确定的当量关系,获得蒸汽发生器传热管涡流幅值对应的蒸汽发生器传热管内壁铁磁性附着层厚度。本发明的蒸汽发生器传热管内壁铁磁性附着层厚度测量方法,实现蒸汽发生器传热管内壁铁磁性附着层厚度变化趋势跟踪测量。

Patent Agency Ranking