基于深度学习的交通冲突识别与风险等级预测方法及系统

    公开(公告)号:CN118736824A

    公开(公告)日:2024-10-01

    申请号:CN202410730289.6

    申请日:2024-06-06

    摘要: 本发明涉及交通冲突管控技术领域,公开了基于深度学习的交通冲突识别与风险等级预测方法及系统,方法包括:基于激光雷达数据得到不同目标车辆的三维点云信息;对不同目标车辆的三维点云信息进行轨迹跟踪,得到不同目标车辆轨迹;根据不同目标车辆轨迹,提取出目标车辆交通特征;根据目标车辆交通特征和预设的冲突检测阈值,构建训练集和测试集;基于训练集对分类模型进行训练,得到训练后的分类模型;训练的过程中采用贝叶斯搜索算法对超参数进行调优;将待识别车辆及其相邻车辆的交通特征,输入到训练后的分类模型中,得到待识别车辆是否发生交通冲突的识别结果和交通冲突等级。本发明为交通管理部门提供科学决策支持,有效提高交通安全水平。