基于特征工程和表示学习的机器行为识别方法

    公开(公告)号:CN113608946B

    公开(公告)日:2023-09-12

    申请号:CN202110910834.6

    申请日:2021-08-10

    Abstract: 基于特征工程和表示学习的机器行为识别方法,由三个步骤构成:步骤一,对大数据进行分析,通过时间、频次等多维度的信息,建立3σ模型,用于确定机器行为的访问时间频段,在机器行为的访问时间频段下,通过分组聚合等方式,归纳总结提取出基于机器行为的特征;步骤二,并通过查阅API文档、软件模拟复现、官方的RFC文档等方式对行为进行定义和命名,整合成一组完备的机器行为特征,完成基于特征工程机器行为识别工作;步骤三,对识别效果不佳的模型加入与其他行为存在交集的特征,去排除其他行为,以提高准确率。

    基于特征工程和表示学习的机器行为识别方法

    公开(公告)号:CN113608946A

    公开(公告)日:2021-11-05

    申请号:CN202110910834.6

    申请日:2021-08-10

    Abstract: 基于特征工程和表示学习的机器行为识别方法,由三个步骤构成:步骤一,对大数据进行分析,通过时间、频次等多维度的信息,建立3σ模型,用于确定机器行为的访问时间频段,在机器行为的访问时间频段下,通过分组聚合等方式,归纳总结提取出基于机器行为的特征;步骤二,并通过查阅API文档、软件模拟复现、官方的RFC文档等方式对行为进行定义和命名,整合成一组完备的机器行为特征,完成基于特征工程机器行为识别工作;步骤三,对识别效果不佳的模型加入与其他行为存在交集的特征,去排除其他行为,以提高准确率。

Patent Agency Ranking