一种基于量子带电系统搜索演化机制的宽带测向方法

    公开(公告)号:CN109358313B

    公开(公告)日:2023-02-10

    申请号:CN201811310188.4

    申请日:2018-11-06

    Abstract: 本发明属于阵列信号处理领域,具体涉及一种基于量子带电系统搜索演化机制的宽带测向方法。本发明步骤为:建立宽带信号采样模型;量子带电系统搜索演化机制参数初始化;计算所有带电粒子的适应度,按照降序方式排序;创建带电粒子的量子记忆库;更新带电粒子的带电量以及它们之间的距离;更新带电粒子的移动概率和所受合力;更新带电粒子的量子旋转角度、量子位置和速度;计算带电粒子的适应度,并按照降序方式排序,更新量子记忆库;判断是否达到最大迭代次数;输出量子带电系统全局最优量子位置映射成最优位置。本发明以量子带电系统搜索演化机制对宽带信号进行测向,减少了运算量和运算时间,提高了收敛速度和收敛精度,实现快速高精度测向。

    一种基于量子犀牛搜索机理的盲源分离方法

    公开(公告)号:CN112036453B

    公开(公告)日:2022-04-29

    申请号:CN202010816157.7

    申请日:2020-08-14

    Abstract: 本发明提供一种基于量子犀牛搜索机理的盲源分离方法,设计了基于两种不同的独立性判据设计的混合优化目标函数,即基于最大化峰度和最大化负熵两种独立性判据设计混合优化目标函数,赋予两种判据相应的权重系数,可以根据混合优化目标函数值随权重系数的变化情况判断出智能计算方法的最佳判据,从而得到更加精确的盲源分离结果。进而设计了一种基于量子犀牛搜索机理及混合优化目标函数的盲源分离方法。本发明所设计的方法可以实现混叠信号的盲源分离,具有收敛速度快、分离精度高、性能稳定等优势,拥有着广泛的应用前景。

    基于量子乌鸦群搜索机制的无人机群任务分配方法

    公开(公告)号:CN108549402B

    公开(公告)日:2020-11-10

    申请号:CN201810224721.9

    申请日:2018-03-19

    Abstract: 本发明涉及一种基于量子乌鸦群搜索机制的无人机群任务分配方法,包括:建立从多个起点到多个任务的无人机群任务分配模型,包括无人机型号数、起点终点和分配模型;初始化量子乌鸦群;根据适应度函数对每只量子乌鸦进行适应度计算,计算出的适应度函数最小值对应的量子乌鸦的位置存为全局最优食物位置;更新每只量子乌鸦的量子位置和位置;根据适应度函数对每只量子乌鸦进行适应度计算,确定每只量子乌鸦的隐藏的食物位置,同时找到迄今为止的最优食物位置,若达到最大迭代代数则输出全局最优食物位置,映射为任务分配矩阵。本发明解决了离散多约束目标函数求解问题,并设计离散量子乌鸦算法作为演进策略,具有收敛速度快,收敛精度高的优点。

    基于文化蚁群搜索机制的多无人机航迹规划方法

    公开(公告)号:CN107622327B

    公开(公告)日:2020-11-03

    申请号:CN201710833308.8

    申请日:2017-09-15

    Abstract: 本发明提供的是一种基于文化蚁群搜索机制的多无人机航迹规划方法。1、根据栅格法对规范空间进行网格划分。2、建立多无人机航迹规划模型,包括无人机个数、起点终点和威胁模型。3、初始化起点和终点。4、初始化蚁群算法,包括初始化蚁群,计算启发因子和引导因子。5、将所有蚂蚁分配到初始节点,更新禁忌知识。根据禁忌知识和状态转移概率选择下一个节点进行转移直到可选节点为空或达到目的节点,更新历史知识,根据历史知识更新信息素。若达到最大迭代数输出最短路径,知道得到U条多无人机最优多路径航迹。本发明解决了搜索速度慢且计算量大,很难找到无人机的最优飞行航迹的问题,且能实现多无人机航迹规划。

    基于量子蜘蛛群演化机制的平面天线阵列稀疏方法

    公开(公告)号:CN107302140B

    公开(公告)日:2020-01-17

    申请号:CN201710333471.8

    申请日:2017-05-12

    Abstract: 本发明提供的是一种基于量子蜘蛛群演化机制的平面天线阵列稀疏方法。1、建立平面天线阵列稀疏模型;2、设置系统参数;3、用适应度函数评价种群中每只蜘蛛编码位置的优劣,适应度函数值最优的位置记为整个种群的全局最优位置;4、划分种群中蜘蛛的性别;5、计算每只蜘蛛的重量;6、更新雌性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雌性蜘蛛量子位置;7、更新雄性蜘蛛量子位置,基于更新后的量子矢量旋转角,采用模拟量子矢量旋转门操作更新雄性蜘蛛量子位置;8更新各自历史最优位置;9:判断是否达到最大迭代次数。本发明解决了多约束平面天线阵列稀疏难题,满足了对平面稀疏阵列的各种要求。

    一种物联网中雾计算的计算资源和频谱资源分配方法

    公开(公告)号:CN110233755A

    公开(公告)日:2019-09-13

    申请号:CN201910475842.5

    申请日:2019-06-03

    Abstract: 本发明提供一种物联网中雾计算的计算资源和频谱资源分配方法,包括:建立雾计算系统模型;初始化量子种子群及参数,通过对量子种子进行测量,得到量子种子的位置;计算所有量子种子的适应度值,得到量子种子群全局最优位置并选择量子种子精英位置集;根据量子种子播撒规则,更新种群中所有量子种子的量子位置;对所有更新后的量子种子的量子位置进行测量得到相应的位置,计算每一个量子种子的适应度值,更新全局最优位置和量子种子精英位置集;如果迭代次数小于预先设定的最大迭代次数,返回第四步;否则,终止迭代,输出量子种子群的全局最优位置,得到相应的计算资源和频谱资源分配方案。本发明可以解决物联网中雾计算的网络能量效率优化问题。

    一种基于二维栅格划分的集群无人机多航迹规划方法

    公开(公告)号:CN107677273A

    公开(公告)日:2018-02-09

    申请号:CN201710810478.4

    申请日:2017-09-11

    Abstract: 本发明属于无人机多航迹规划技术领域,具体涉及一种基于二维栅格划分的集群无人机多航迹规划方法。步骤为:用栅格法将二维空间规划为若干正方形网格;建立无人机威胁约束模型;初始化量子蚁群,初始化量子信息素并将所有量子蚂蚁置于初始节点;所有量子蚂蚁根据禁忌搜索和量子信息素更新节点选择概率等机制完成路径搜索;根据最优路径的综合代价更新量子旋转角;使用模拟的量子旋转门更新量子信息素;将输出的最优路径存入航迹集合;判断航迹集合中的航迹个数是否到达最大航迹个数;将航迹集合中的航迹依长度排序供无人机选择。将传统蚁群算法的启发式搜索机制与量子计算和禁忌搜索相结合,提供一种获取多条选择路径的集群无人机航迹规划方法。

    基于量子猫群搜索机制的多目标中继选择方法

    公开(公告)号:CN107333317A

    公开(公告)日:2017-11-07

    申请号:CN201710562235.3

    申请日:2017-07-11

    Abstract: 本发明提供的是一种基于量子猫群搜索机制的多目标中继选择方法。一,建立中继系统模型。二,初始化三个量子猫群。三,对第1个量子猫群和第2个量子猫进行更新。四:对第3个量子猫群中的每一量子猫进行更新。五:将第3个量子猫群更新出的H个量子猫放入非支配解集中。对非支配解集中的量子猫进行非支配解排序和拥挤度计算,保留前H个量子猫作为非支配解。将第3个量子猫的解群替换为非支配解集中的解。六:对非支配解集和演化单目标的量子猫群进行操作。七:如果进化没有终止,返回步骤三,否则,终止迭代,输出非支配解集中的非支配解。本发明可以同时考虑输出端信噪比和网络能量效率来解决多目标中继选择问题,适用性强,应用范围广泛。

    多目标绿色认知无线电系统参数生成方法

    公开(公告)号:CN106452625A

    公开(公告)日:2017-02-22

    申请号:CN201610880914.0

    申请日:2016-10-09

    CPC classification number: H04B17/382

    Abstract: 本发明提供的是一种多目标绿色认知无线电系统参数生成方法。建立多目标绿色认知无线电参数设计模型,确定需要优化的多目标问题所对应的适应度函数形式。设计量子多目标多种群共生进化方法,通过量子多目标多种群共生进化方法,对种群中所有量子粒子的量子速度和位置进行更新,并使用非支配位置排序和位置拥挤度计算。使用多目标多种群共生进化方法实现确保可靠性的多目标绿色认知无线电参数设计。根据所得到的最终的非支配位置集,确保可靠性的多目标绿色认知无线电系统根据用户的实际需要选取相应的参数设计方案。本发明的使用范围广泛,能应用在现有绿色认知无线电参数设计方法所不能很好解决的确保可靠性的绿色认知无线电系统。

Patent Agency Ranking