一种基于文化蚁狮机制的特殊阵列动态测向方法

    公开(公告)号:CN109212465B

    公开(公告)日:2024-01-30

    申请号:CN201811017378.7

    申请日:2018-09-01

    Abstract: 一种基于文化蚁狮机制的特殊阵列动态测向方法,属于阵列信号处理领域。本发明包括如下步骤:设置非等距双均匀阵列,初始化搜索区间和最大迭代次数,更新协方差矩阵,初始化蚁群和蚁狮群空间,计算适应度值,标记精英蚁狮,初始化信仰空间;判断迭代次数是否为文化算子参与度的整数倍,若不是,则轮盘赌选择优秀的蚁狮,蚂蚁围绕其和精英蚁狮随机游走,计算蚂蚁适应值,更新蚁狮位置和精英蚁狮位置,否则对蚁狮变异,计算变异后蚁狮适应值,选取适应值较优的一半蚁狮作为下一代蚁狮,更新信仰空间和精英蚁狮位置。本发明不仅跟踪速度快,搜索精度高,而且可扩展阵列孔径,突破信源数不能超过天线数的限制,回避传统方法对天线摆放的苛刻要求。

    一种基于量子细胞膜优化机理的空时测向方法

    公开(公告)号:CN109270485B

    公开(公告)日:2023-04-28

    申请号:CN201811017339.7

    申请日:2018-09-01

    Abstract: 本发明属于阵列信号处理领域,具体涉及一种基于量子细胞膜优化机理的空时测向方法,包括以下步骤:获取信号时域数据、信号快拍采样和对采样数据进行时域延迟;构造极大似然估计的极大似然估计方程,进行量子物质群的初始化,并且构造适应度函数;选取精英量子个体,对精英量子个体进行局部搜索;划分量子个体类型;高浓度脂溶性量子个体自由扩散;高浓度非脂溶性量子个体运动;低浓度量子个体运动;生成新一代的量子物质群;判断是否达到最大迭代次数。本发明设计的基于量子细胞膜优化机理的空时测向方法,解决了极大似然类估计方法计算量大的难题,可快速得到较为精确的信号角度和频率的联合估计结果,易于在工程应用中实时处理。

    基于多目标量子蜘蛛群演化机制的环形天线阵列稀疏方法

    公开(公告)号:CN107944133B

    公开(公告)日:2021-01-12

    申请号:CN201711172473.X

    申请日:2017-11-22

    Abstract: 本发明提供一种基于多目标量子蜘蛛群演化机制的环形天线阵列稀疏方法,建立环形天线阵列稀疏模型,设置恰当的系统参数,并初始化种群中每只蜘蛛在解空间中的量子位置和{0,1}编码位置。设计多目标适应度函数。计算种群中每只蜘蛛的重量,根据重量划分蜘蛛的性别。根据初始种群,生成初始精英解集。从精英解集中选取全局最优解和次优解。然后分别更新雌性蜘蛛和雄性蜘蛛的量子位置,并根据量子位置通过测量的方式转化为{0,1}编码位置。更新精英解集,并更新种群中所有蜘蛛的重量。最后判断是否达到最大迭代次数,如果达到最大迭代次数,则输出精英解集;否则返回迭代。本发明解决了多目标环形天线阵列稀疏构建这样的高维度离散多目标问题。

    基于量子头脑风暴的异构传感器网络最佳目标覆盖方法

    公开(公告)号:CN107396375B

    公开(公告)日:2020-12-22

    申请号:CN201710606778.0

    申请日:2017-07-24

    Abstract: 本发明针对在求解目标覆盖中最佳等效工作传感器分布的问题时,现有方法的寻优结果差、收敛速度慢以及联合感知概率更高时失效的缺点,提出了一种新的异构传感器网络最佳目标覆盖方法。本发明解决了当前头脑风暴优化算法无法应用于离散问题的缺点,拓宽了头脑风暴算法的应用范围。仿真结果表明,与现有的经典目标覆盖方法相比,本发明的收敛速度与收敛精度更优,从而证明了本发明的有效性。在相同条件下,联合感知概率约束更严格时传统方法将会失效,而本方法则仍然可行。本发明将头脑风暴过程中的方案交流融合体现在新方案的产生方式中,比原有头脑风暴算法的方案交流更广泛,更接近真实的头脑风暴过程。

    一种基于量子搜寻者搜索机制的圆环阵方向图综合方法

    公开(公告)号:CN107658573B

    公开(公告)日:2020-07-28

    申请号:CN201710725355.0

    申请日:2017-08-22

    Abstract: 本发明提供的是一种基于量子搜寻者搜索机制的圆环阵方向图综合方法。实现步骤为:建立圆环阵模型;初始化量子搜寻者群;计算量子搜寻者所在位置和量子位置的适应度值;更新量子搜寻者搜索机制的搜索步长和搜素方向;根据演化规则更新量子位置;计算量子搜寻者新位置下的适应度值,确定个体历史最优量子位置,并确定全局最优量子位置;如果达到最大迭代次数,输出全局最优量子位置;把全局最优量子位置映射为圆环阵的参数,带入方向图函数,得到其对应的归一化方向图。该方法结合了量子计算与搜寻者搜索机制的优势,具有搜索速度快、全局搜索能力强的优点。

    一种冲击噪声环境下基于均匀圆阵的相干信号参数估计方法

    公开(公告)号:CN109375154A

    公开(公告)日:2019-02-22

    申请号:CN201811236543.8

    申请日:2018-10-23

    Abstract: 本发明属于阵列信号处理参数估计领域,具体涉及一种冲击噪声环境下基于均匀圆阵的相干信号参数估计方法,包括以下步骤:对空间中D个信源信号进行快拍采样;对快拍采样数据做去冲击预处理;对阵列输出数据进行模式激励变换;构造稀疏重构字典集;稀疏重构得到相干信源方位角;判断是否达到最大迭代次数,若是,执行步骤七;否则令t=t+1,返回步骤五;得到稀疏重构结果,利用索引集U得到信源方位角信息,输出相干信源波达方向估计结果。本发明解决了冲击噪声环境下基于均匀圆阵的相干信号参数估计问题,使用模式激励变换和压缩感知稀疏重构思想作为参数估计的基础,所设计的方法具有计算复杂度低、计算时间短和鲁棒性高的优点。

    一种基于量子搜寻者搜索机制的圆环阵方向图综合方法

    公开(公告)号:CN107658573A

    公开(公告)日:2018-02-02

    申请号:CN201710725355.0

    申请日:2017-08-22

    Abstract: 本发明提供的是一种基于量子搜寻者搜索机制的圆环阵方向图综合方法。实现步骤为:建立圆环阵模型;初始化量子搜寻者群;计算量子搜寻者所在位置和量子位置的适应度值;更新量子搜寻者搜索机制的搜索步长和搜素方向;根据演化规则更新量子位置;计算量子搜寻者新位置下的适应度值,确定个体历史最优量子位置,并确定全局最优量子位置;如果达到最大迭代次数,输出全局最优量子位置;把全局最优量子位置映射为圆环阵的参数,带入方向图函数,得到其对应的归一化方向图。该方法结合了量子计算与搜寻者搜索机制的优势,具有搜索速度快、全局搜索能力强的优点。

    基于量子鸡群演化机制的环形天线阵列稀疏方法

    公开(公告)号:CN107657098A

    公开(公告)日:2018-02-02

    申请号:CN201710834252.8

    申请日:2017-09-15

    Abstract: 本发明提供的是一种基于量子鸡群演化机制的环形天线阵列稀疏方法。1、建立环形天线阵列稀疏模型;2、设置初始参数;3、设计适应度函数;4、计算种群中每只鸡的适应度值,区分鸡的种类并划分子种群;5、6及7分别构建公鸡、母鸡和小鸡的量子矢量旋转角更新公式,更新量子矢量旋转角,更新的量子位置;8、过测量的方式转化为其{0,1}编码位置,计算该{0,1}编码位置的适应度值,并更新每只鸡的个体历史最优解和全局最优解;9:判断是否达到最大迭代次数。该方法具有更快的收敛速度和更高的收敛精度,并在解决环形天线阵列稀疏构建的问题中具有很好的稀疏效果,很大程度的降低了天线阵列系统的复杂度和成本,达到了预期的要求。

    一种基于极化敏感阵列的相干信源测向方法

    公开(公告)号:CN107656239A

    公开(公告)日:2018-02-02

    申请号:CN201710722329.2

    申请日:2017-08-22

    CPC classification number: G01S3/782

    Abstract: 本发明提出了一种极化敏感阵列下的相干信源测向方法,属于极化敏感阵列信号处理领域。本发明公开的方法的步骤为:(1)建立极化敏感阵列测向模型;(2)初始化种群中的量子花粉,确定全局最优量子花粉;(3)每个量子花粉依概率生成一个新的量子花粉;(4)把每个量子花粉映射为花粉,计算每个量子花粉的适应度并选择量子花粉;(5)使用量子差分演进机制产生新的量子花粉,并进行选择;(6)判断是否达到最大迭代次数:若达到最大迭代次数,执行步骤(7);否则,令t=t+1,返回步骤(3)继续迭代;(7)输出全局最优量子花粉的极大似然估计值。通过本发明提供的方法在信噪比低、快拍数小以及相干信源的情况下,都可以进行有效测向。

    一种信能协同传输的OFDM中继网络资源分配方法

    公开(公告)号:CN107592674A

    公开(公告)日:2018-01-16

    申请号:CN201710810434.1

    申请日:2017-09-11

    Abstract: 本发明属于无线通信技术领域,具体涉及一种信能协同传输的OFDM中继网络资源分配方法。步骤为:建立信能协同传输的OFDM中继网络资源分配方法模型;初始化量子蟑螂群的初始种群;构造食物浓度函数,获得全局最优量子位置;量子蟑螂根据两种量子演化规则进行量子旋转角更新,根据量子演化规则爬行获得新的量子位置;把每只量子蟑螂新产生的量子位置映射为位置,更新每只量子蟑螂记忆中的自身最优量子位置和全局最优量子位置;判断是否达到最大迭代次数,若没有达到最大迭代次数,迭代次数加1,返回到第四步继续迭代,否则进入到下一步骤;结束迭代,输出资源分配结果。本发明将量子计算与蟑螂搜索机制相结合,具有搜索速度快和全局搜索能力强的优点。

Patent Agency Ranking