基于多目标量子蜘蛛群演化机制的环形天线阵列稀疏方法
Abstract:
本发明提供一种基于多目标量子蜘蛛群演化机制的环形天线阵列稀疏方法,建立环形天线阵列稀疏模型,设置恰当的系统参数,并初始化种群中每只蜘蛛在解空间中的量子位置和{0,1}编码位置。设计多目标适应度函数。计算种群中每只蜘蛛的重量,根据重量划分蜘蛛的性别。根据初始种群,生成初始精英解集。从精英解集中选取全局最优解和次优解。然后分别更新雌性蜘蛛和雄性蜘蛛的量子位置,并根据量子位置通过测量的方式转化为{0,1}编码位置。更新精英解集,并更新种群中所有蜘蛛的重量。最后判断是否达到最大迭代次数,如果达到最大迭代次数,则输出精英解集;否则返回迭代。本发明解决了多目标环形天线阵列稀疏构建这样的高维度离散多目标问题。
Patent Agency Ranking
0/0