-
公开(公告)号:CN114213664A
公开(公告)日:2022-03-22
申请号:CN202111583211.9
申请日:2021-12-22
申请人: 哈尔滨工业大学
IPC分类号: C08G77/62 , C08G77/00 , C04B35/14 , C04B35/48 , C04B35/622
摘要: 一种五组分SiBCNZr陶瓷先驱体的合成方法,本发明属于高分子材料技术领域,具体涉及一种五组分SiBCNZr陶瓷先驱体的合成方法。本发明要解决现有方法制备的SiBCN陶瓷先驱体抗氧化性能差的问题。在固化过程中将Zr等元素交联在SiBCN基先驱体中,即通过共价键将Si、N、B、C、Zr连接起来,形成含有大量Si、B、N、C、Zr元素的先驱体聚合物。可有效地调整SiBCNZr陶瓷先驱体的结构,保证先驱体中元素分布的均匀性。随后通过固化反应使先驱体脱去小分子形成高聚物,最终经过热解能够较高收率获得共价键连接稳定的SiBCNZr陶瓷材料。本发明用于五组分SiBCNZr陶瓷先驱体。
-
公开(公告)号:CN108558422B
公开(公告)日:2021-11-30
申请号:CN201810031554.6
申请日:2018-01-12
申请人: 哈尔滨工业大学
IPC分类号: C04B35/80 , C04B35/628 , C04B35/622 , C04B35/56
摘要: 具有高断裂功的三维碳纤维增韧超高温陶瓷基复合材料的制备方法,本发明属于无机非金属材料领域,它为了解决目前制备方法所获得的三维碳纤维增韧超高温陶瓷基复合材料陶瓷组分含量较低、断裂功较低的问题。制备方法:一、在三维碳纤维编织体表面沉积裂解碳涂层;二、将超高温陶瓷粉体与无水乙醇以及聚丙烯酸混合,得到超高温陶瓷浆料;三、通过注浆装置将陶瓷浆料注入三维碳纤维编织体内部,待注入出现阻力时,再施加超声振动,反复振动辅助注浆过程多次;四、进行振动辅助真空浸渍过程多次;五、模压后进行放电等离子烧结。本发明所制备的三维碳纤维增韧超高温陶瓷基复合材料本征脆性得到了明显的优化,断裂功高达~1200J/m2。
-
公开(公告)号:CN108947534B
公开(公告)日:2021-07-16
申请号:CN201811045318.6
申请日:2018-09-07
申请人: 哈尔滨工业大学
IPC分类号: C04B35/56 , C04B35/626
摘要: 一种批量合成钽铪碳陶瓷粉体的制备方法,本发明涉及无机材料制备领域。本发明要解决现有制备Ta4HfC5陶瓷粉体方法无法控制粉体粒径的均匀性,并且粉体纯度易受影响的技术问题。方法:一、HfCl4粉体加入到乙酰丙酮,加热搅拌;二、加入TaCl5粉体和正丁醇混合液,加热搅拌;三、加入酚醛树脂,加热搅拌;四、移入反应釜中进行溶剂热处理;五、干燥,煅烧。本发明制备得到的粉体为Ta4HfC5单相固溶体,粉体纯度≥98.5%,粉体粒径≤1μm。本发明用于批量合成Ta4HfC5陶瓷粉体。
-
公开(公告)号:CN109400165B
公开(公告)日:2021-07-13
申请号:CN201811390592.7
申请日:2018-11-21
申请人: 哈尔滨工业大学
IPC分类号: C04B35/56 , C04B35/626
摘要: 一种简易批量合成高纯五碳化四钽铪陶瓷粉体的方法,涉及一种合成五碳化四钽铪陶瓷粉体的方法。目的是解决现有能够得到高纯Ta4HfC5陶瓷粉体的化学法存在危险性大的问题。制备方法:将HfCl4粉体加入到乙酰丙酮中并加热搅拌得到前驱体溶液A;正丁醇加入到前驱体溶液A中得到前驱体溶液B,加入TaCl5粉体得到前驱体溶液C;酚醛树脂加入到前驱体溶液C中并加热搅拌得到前驱体溶液D;氨水加入到前驱体溶液D中并搅拌均匀,得到前驱体产物,最后干燥和煅烧。本发明在常温常压下进行,对设备要求低,实验方法简单,危险性低,适合批量生产制备的粉体纯度≥98.5%,粒径均匀。本发明适用于制备高纯五碳化四钽铪陶瓷粉体。
-
公开(公告)号:CN104692404A
公开(公告)日:2015-06-10
申请号:CN201510116960.9
申请日:2015-03-17
申请人: 哈尔滨工业大学
IPC分类号: C01B35/04
CPC分类号: C01B35/04 , C01P2004/03
摘要: 一种二硼化锆晶体的合成方法,涉及一种金属硼化物晶体的合成方法。本发明是要解决目前二硼化锆晶体合成困难,难以获得大尺寸晶体的技术问题。本发明的方法为:一、将硼粉、锆粉和铝粉混合均匀,得到混合均匀的粉末;二、将步骤一中混合均匀的粉体放在氧化铝陶瓷坩埚中,然后在真空或惰性气体保护气氛中升温反应;三、将反应后的坩埚取出,用碱溶液或酸溶液将坩埚内的熔融铝溶解后,得到二硼化锆晶体。本发明方法原料易得,工艺简单;且通过调节保温时间可以获得不同尺寸的ZrB2晶体。本发明应用于金属硼化物晶体的制备领域。
-
公开(公告)号:CN104532551A
公开(公告)日:2015-04-22
申请号:CN201410765741.9
申请日:2014-12-12
申请人: 哈尔滨工业大学
IPC分类号: D06M11/80 , D06M11/64 , D06M13/50 , D06M101/40
摘要: 一种碳纤维表面原位制备硅硼碳氮陶瓷涂层的方法,涉及一种碳纤维表面原位制备陶瓷涂层的方法。本发明是要解决目前碳纤维表面惰性强、表面能低、与基体的界面结合性差、从而影响复合材料的性能的技术问题。本发明方法:一、碳纤维的氧化处理;二、碳纤维的表面处理;三、碳纤维表面包覆硅硼碳氮陶瓷先驱体;四、高温裂解。本发明优点:本发明提高了碳纤维的界面性能,有效的保护碳纤维不受损伤,并且增加了碳纤维的包覆率以及与基体的结合性,有效的改善了界面性能,改善了陶瓷基复合材料的热学性能。
-
公开(公告)号:CN104016685A
公开(公告)日:2014-09-03
申请号:CN201410283089.7
申请日:2014-06-23
申请人: 哈尔滨工业大学
IPC分类号: C04B35/626
摘要: 一种原位合成碳纳米管改性超高温陶瓷杂化粉体的方法,它涉及一种原位合成碳纳米管改性超高温陶瓷杂化粉体的方法,本发明是为了解决现有制备碳纳米管改性超高温陶瓷时,碳纳米管存在团聚的问题。一种原位合成碳纳米管改性超高温陶瓷杂化粉体的方法,按以下步骤进行:一、将催化剂充分分散在有机聚合物先驱体中得到混合粉体;二、将步骤一得到的混合粉体放在方形上部敞口的模具中,在管式炉中加热裂解,直至达到有机聚合物先驱体完全陶瓷化温度1450℃~1550℃,保温时间为0.5h~2h;三、将步骤二得到的加热裂解后的混合粉体,自然降温到20℃~25℃,即得到碳纳米管改性超高温陶瓷杂化粉体。本发明适用于结构陶瓷技术领域,尤其适用于碳纳米管改性超高温陶瓷技术领域。
-
公开(公告)号:CN101250061B
公开(公告)日:2010-06-02
申请号:CN200810064204.6
申请日:2008-03-31
申请人: 哈尔滨工业大学
IPC分类号: C04B35/58 , C04B35/80 , C04B35/622
摘要: 氧化锆增韧硼化物超高温陶瓷基复合材料的制备方法,它涉及一种硼化物超高温陶瓷基复合材料的制备方法。它解决了现有硼化物超高温陶瓷基复合材料韧性差的问题。制备方法如下:一、将硼化物粉末、碳化硅颗粒和氧化钇部分稳定氧化锆颗粒混合;二、将混合物进行超声波清洗,然后球磨混合再烘干;三、烘干后的混合物经保温烧结,冷却至室温取出,即得氧化锆增韧硼化物超高温陶瓷基复合材料。本发明制备工艺简单、成本低,所得材料的韧性值高达6.0~6.8MPa·m1/2。
-
公开(公告)号:CN101550004A
公开(公告)日:2009-10-07
申请号:CN200910071943.2
申请日:2009-05-04
申请人: 哈尔滨工业大学
IPC分类号: C04B35/52 , C04B35/622
摘要: 一种石墨-碳化锆抗氧化烧蚀型材料及其制备方法,它涉及一种石墨材料及其制备方法。它解决了现有石墨材料高温下易氧化以及经过浸渍和喷涂处理后的石墨材料致密低的问题。石墨-碳化锆抗氧化烧蚀型材料由氧化锆粉末和石墨粉末制成。方法:一、称取原料,球磨湿混后得浆料;二、浆料烘干后研磨,得混合粉料;三、混合粉料在真空条件下热压烧结,随炉冷却后取出,即得石墨-碳化锆抗氧化烧蚀型材料。本发明中石墨-碳化锆抗氧化烧蚀型材料的质量损失率小于现有石墨材料,耐高温性能好,高温下不易氧化,突破了现有石墨材料在450℃以下使用的温度限制,其使用温度显著地提高到了1200~2200℃,致密度大于90%,且力学性能也提高了。
-
公开(公告)号:CN101265108A
公开(公告)日:2008-09-17
申请号:CN200810064313.8
申请日:2008-04-16
申请人: 哈尔滨工业大学
IPC分类号: C04B35/58 , C04B35/622
摘要: 一种硼化物-碳化硅-碳化硼三元陶瓷基复合材料及其制备方法,它涉及一种三元陶瓷基复合材料及其制备方法。本发明解决了现有超高温陶瓷材料存在韧性低的缺陷。本发明的硼化物-碳化硅-碳化硼三元陶瓷基复合材料是按照体积百分比由50%~80%的硼化物、10%~30%的碳化硅和5%~30%的碳化硼制成的。本发明的硼化物-碳化硅-碳化硼三元陶瓷基复合材料的制备方法按如下步骤进行:1.湿混,过筛;2.热压烧结;即得到硼化物-碳化硅-碳化硼三元陶瓷基复合材料。本发明的硼化物-碳化硅-碳化硼三元陶瓷基复合材料的抗弯强度最高能达到890MPa,断裂韧性值最高可达到7.1MPa/m2。
-
-
-
-
-
-
-
-
-