一种可溶型低温亚胺化聚酰亚胺的制备方法

    公开(公告)号:CN110713598A

    公开(公告)日:2020-01-21

    申请号:CN201911159677.9

    申请日:2019-11-22

    Abstract: 本发明公开了一种可溶型低温亚胺化聚酰亚胺的制备方法,属于高分子材料领域,具体方案如下:一种可溶型低温亚胺化聚酰亚胺的制备方法,包括如下步骤:步骤一:单体与溶剂的干燥;步骤二:聚酰胺酸的室温合成;步骤三:聚酰胺酸的低温亚胺化;步骤四:聚酰亚胺粉末的制取。本发明操作简便,亚胺化过程温度低、耗时短,优选配方可以省去催化剂,所得聚酰亚胺溶解性好,利于加工成型。

    一种多羟丙基POSS的制备方法

    公开(公告)号:CN110483781A

    公开(公告)日:2019-11-22

    申请号:CN201910854375.7

    申请日:2019-09-10

    Abstract: 一种多羟丙基POSS的制备方法,属于POSS制备技术领域。所述方法如下:使用丙酮将八氯丙基POSS溶解;加入强碱催化剂,40℃反应4~8h;所得溶液旋蒸,即得到多羟丙基POSS。本发明相对于现有技术的有益效果为:反应时间短,现有的技术需要室温搅拌24h,本发明反应4~8h即可。操作简单,现有的技术使用Ag2O作为催化剂,由于Ag2O不易储存,实验前需先用AgNO3与NaOH反应合成Ag2O,且实验操作有一定难度,Ag2O合成不好,后期的官能团转化效果不好。本发明直接使用强碱,四甲基氢氧化铵和NaOH,操作相对简单。成功率高,现有的技术在多次重复实验中,官能团成功转换的概率基本为0,本发明很容易就将氯丙基POSS转换成羟丙基POSS。

    一种聚酰亚胺的绿色制备方法

    公开(公告)号:CN110862539A

    公开(公告)日:2020-03-06

    申请号:CN201911158631.5

    申请日:2019-11-22

    Abstract: 本发明公开了一种聚酰亚胺的绿色制备方法,属于高分子材料领域,具体方案如下:一种聚酰亚胺的绿色制备方法包括如下步骤:步骤一、单体与溶剂的除水处理;步骤二、有机溶剂体系中聚酰胺酸的合成;步骤三、聚酰胺酸与有机溶剂的分离;步骤四、聚酰胺酸的热亚胺化;步骤五、溶剂的回收再利用。本发明操作简便,产物与溶剂分离率高,溶剂回收率高,亚胺化工序节约能量,可以较为绿色环保的制备聚酰亚胺。

    ZnO纳米棒/碳纤维的制备方法及其在光电降解有机染料中的应用

    公开(公告)号:CN110813273A

    公开(公告)日:2020-02-21

    申请号:CN201911208155.3

    申请日:2019-11-30

    Abstract: 本发明公开了一种ZnO纳米棒/碳纤维的制备方法及其在光电降解有机染料中的应用,所述方法包括如下步骤:一、在碳纤维表面磁控溅射ZnO纳米薄膜;二、以溅射的ZnO纳米薄膜为模板,生长ZnO纳米棒阵列。本发明使用碳纤维作为基底,使ZnO纳米棒呈放射状生长于碳纤维的表面,显著提高了ZnO纳米棒对有机染料的吸附效率。碳纤维作为导电基底,可以防止ZnO纳米棒中电子与空穴的快速复合。使用磁控溅射ZnO薄膜作为ZnO纳米棒与碳纤维之间的界面层,改善了ZnO纳米棒与碳纤维之前的结合性能。通过调控磁控溅射的参数,可以调节ZnO纳米棒与碳纤维之间的界面载流子传递效率,进而保证ZnO纳米棒对有机染料的催化降解速率。

    一种提升PET食品包装喷墨涂层紫外性能的纳米材料的制备方法

    公开(公告)号:CN110669383A

    公开(公告)日:2020-01-10

    申请号:CN201910984063.8

    申请日:2019-10-16

    Abstract: 本发明公开了一种提升PET食品包装喷墨涂层紫外性能的纳米材料的制备方法,所述方法包括如下步骤:步骤一、二氧化硅包覆氧化锌ZnO@SiO2的制备;步骤二、颜料ZnO@SiO2的分散液的制备;步骤三、喷墨涂层涂布液的制备与涂布。本发明以量子点ZnO为核,SiO2为壳,制备得到一种耐UV-A紫外光纳米粒子,并以其为颜料,PET薄膜为基材,聚乙烯醇为胶粘剂,得到一种具有优异的耐紫外性能、良好的喷墨性能、可以屏蔽大部分UV-A紫外光的PET食品包装薄膜。本发明制备得到的ZnO@SiO2纳米粒子相比于商用的SiO2具有较高的孔隙率,这就大大提高了涂层的吸墨性能。

    一种碳纤维聚酰亚胺上浆剂及其制备方法和应用

    公开(公告)号:CN110747648B

    公开(公告)日:2022-04-19

    申请号:CN201911158645.7

    申请日:2019-11-22

    Abstract: 本发明公开了一种碳纤维聚酰亚胺上浆剂及其制备方法和应用,属于高分子材料领域,具体方案如下:一种碳纤维聚酰亚胺上浆剂,包括聚酰亚胺、有机溶剂和去离子水,所述聚酰亚胺占上浆剂总质量的0.1~2%,去离子水占上浆剂总质量的90~96%,其余为有机溶剂;制备方法为:将聚酰亚胺溶于有机溶剂中,形成溶液A;向溶液A中逐滴去离子水,形成悬浊液型碳纤维聚酰亚胺上浆剂;将碳纤维在所述碳纤维聚酰亚胺上浆剂中浸渍1~15s后进行刮浆处理,然后烘干,使得聚酰亚胺在碳纤维表面成膜从而完成上浆处理。本发明不仅可以提高热塑性树脂基碳纤维复合材料的界面性能,还具有操作简便,上浆剂成品中有机溶剂含量少,绿色环保等优点。

    一种多羟丙基POSS的制备方法

    公开(公告)号:CN110483781B

    公开(公告)日:2021-04-23

    申请号:CN201910854375.7

    申请日:2019-09-10

    Abstract: 一种多羟丙基POSS的制备方法,属于POSS制备技术领域。所述方法如下:使用丙酮将八氯丙基POSS溶解;加入强碱催化剂,40℃反应4~8h;所得溶液旋蒸,即得到多羟丙基POSS。本发明相对于现有技术的有益效果为:反应时间短,现有的技术需要室温搅拌24h,本发明反应4~8h即可。操作简单,现有的技术使用Ag2O作为催化剂,由于Ag2O不易储存,实验前需先用AgNO3与NaOH反应合成Ag2O,且实验操作有一定难度,Ag2O合成不好,后期的官能团转化效果不好。本发明直接使用强碱,四甲基氢氧化铵和NaOH,操作相对简单。成功率高,现有的技术在多次重复实验中,官能团成功转换的概率基本为0,本发明很容易就将氯丙基POSS转换成羟丙基POSS。

    一种原子氧改善PBO纤维/环氧复合材料界面性能的方法及应用

    公开(公告)号:CN104194010A

    公开(公告)日:2014-12-10

    申请号:CN201410429009.4

    申请日:2014-08-28

    Abstract: 本发明公开了一种原子氧改善PBO纤维/环氧复合材料界面性能的方法及应用,其步骤如下:将PBO纤维置于灯丝放电磁场约束型原子氧效应地面模拟试验设备的真空室内,在真空室气压为0.05~0.2Pa、放电电压为100~150V、放电电流为100~190mA、原子氧通量为1.5×1015~9.5×1015atom/cm2·s的条件下,原子氧辐照处理1~4h。本发明采用原子氧地面模拟实验设备对PBO纤维进行短时间的辐照处理,旨在借由原子氧的氧化作用提高纤维表面的粗糙度和极性,从而达到改善PBO纤维/环氧复合材料界面性能的目的。本发明操作简便,成本较低,处理时间相对较短,改性效果明显,纤维本体性能损失小,可以实现批量处理,适用于工业化生产。

    一种在超临界二氧化碳环境中改性芳纶纤维提高力学性能与表面性能的方法

    公开(公告)号:CN110761081B

    公开(公告)日:2022-02-15

    申请号:CN201911067311.9

    申请日:2019-11-04

    Abstract: 本发明公开了一种在超临界二氧化碳环境中改性芳纶纤维提高力学性能与表面性能的方法,所述方法包括如下步骤:步骤一、对芳纶纤维进行清洗、干燥处理;步骤二、将芳纶纤维和反应试剂装入密闭容器中,并使芳纶纤维保持张力并不与反应试剂接触;步骤三、通入二氧化碳气体,加热升温升压,使密闭容器内为超临界二氧化碳状态;步骤四、溶胀反应后,缓慢匀速泄压,得到改性的芳纶纤维;步骤五、对改性后的芳纶纤维进行清洗与干燥。本发明不仅实现了芳纶纤维表面的活化及纵向拉伸强度的提高,还通过纤维内部分子链间的交联反应强化了纤维皮层与芯层的结合,改善了皮芯结构,提高了纤维的横向强度,对芳纶纤维的改性及使用效能的提高具有重要意义。

    一种在超临界二氧化碳环境中改性芳纶纤维提高力学性能与表面性能的方法

    公开(公告)号:CN110761081A

    公开(公告)日:2020-02-07

    申请号:CN201911067311.9

    申请日:2019-11-04

    Abstract: 本发明公开了一种在超临界二氧化碳环境中改性芳纶纤维提高力学性能与表面性能的方法,所述方法包括如下步骤:步骤一、对芳纶纤维进行清洗、干燥处理;步骤二、将芳纶纤维和反应试剂装入密闭容器中,并使芳纶纤维保持张力并不与反应试剂接触;步骤三、通入二氧化碳气体,加热升温升压,使密闭容器内为超临界二氧化碳状态;步骤四、溶胀反应后,缓慢匀速泄压,得到改性的芳纶纤维;步骤五、对改性后的芳纶纤维进行清洗与干燥。本发明不仅实现了芳纶纤维表面的活化及纵向拉伸强度的提高,还通过纤维内部分子链间的交联反应强化了纤维皮层与芯层的结合,改善了皮芯结构,提高了纤维的横向强度,对芳纶纤维的改性及使用效能的提高具有重要意义。

Patent Agency Ranking