接近并跟踪空间非合作目标的有限时间容错控制方法

    公开(公告)号:CN105159304B

    公开(公告)日:2017-12-19

    申请号:CN201510363123.6

    申请日:2015-06-26

    Abstract: 接近并跟踪空间非合作目标的有限时间容错控制方法,属于轨道控制和姿态控制领域。现有追踪航天器的对非合作目标进行视线跟踪时存在追踪控制误差大导致的跟踪监视精度低的问题。一种接近并跟踪空间非合作目标的有限时间容错控制方法,在视线坐标系下建立动力学和运动学方程,考虑到系统的不确定性、非合作目标运动参数部分未知、控制输入饱和、死区等情况,利用RBF神经网络进行自适应估计和补偿,采用反步法思想设计控制器使追踪航天器在有限时间内收敛到期望的姿态和轨道并保持。本发明采用有限时间控制方法具有控制收敛快、鲁棒性好以及跟踪控制精度高的优点。

    航天器相对轨道的控制方法

    公开(公告)号:CN103728980B

    公开(公告)日:2016-08-31

    申请号:CN201410007259.9

    申请日:2014-01-08

    Abstract: 航天器相对轨道的控制方法,本发明涉及航天器的近距离相对轨道控制方法。以实现航天器的掠飞模式,即追踪航天器在进入与目标航天器相关的指定空间范围后按自身轨道运行,只需要进行姿态控制;从而克服传统的悬停、伴随飞行、绕飞等方法可能出现计算复杂、姿轨控耦合导致指向精度不高、易暴露身份、时间难以保持等问题。本发明的方法通过下述步骤实现:一、追踪航天器进入目标航天器的视线角范围内而且追踪航天器进入二者之间确定的距离范围内;二、计算并确定追踪航天器期望轨道的起点、末点和初始入轨速度,并确定主飘方向;三、追踪航天器在期望轨道的起点,以上述计算并确定的初始入轨速度进入轨道,并在期望轨道的末点脱离轨道。

    一种相对非合作目标的航天器相对轨道有限时间抗饱和控制方法

    公开(公告)号:CN105242680B

    公开(公告)日:2018-07-06

    申请号:CN201510712305.X

    申请日:2015-10-28

    Abstract: 一种相对非合作目标的航天器相对轨道有限时间抗饱和控制方法,本发明涉及相对非合作目标的航天器相对轨道有限时间抗饱和控制方法。本发明为了解决现有控制方案中控制器的设计复杂,求解过程麻烦,脉冲控制下航天器相对轨道转移过程对未知因素的应变能力弱,采用滑模控制,控制器会频繁切换,引起系统抖振,而且在现有的方法中没有考虑到实际工程中的控制器存在饱和,不能在有限时间内收敛到期望值以及在实际的工程应用中有一定的限制的问题。具体方法为:建立相对轨道运动动力学模型;将相对轨道运动动力学模型C‑W方程进行解耦,得到解耦后的双积分系统;根据解耦后的双积分系统设计有限时间饱和控制器。本发明应用于航天领域。

    针对空间非合作目标的相对轨道设计及高精度姿态指向控制方法

    公开(公告)号:CN104656666B

    公开(公告)日:2017-04-26

    申请号:CN201510104660.9

    申请日:2015-03-11

    Abstract: 针对空间非合作目标的相对轨道设计及高精度姿态指向控制方法,本发明涉及相对轨道设计及高精度姿态指向控制方法。本发明是要解决现有技术在跟踪位置范围受限时轨道控制困难,轨道姿态耦合控制时影响姿态指向精度等问题。一、追踪航天器相对空间非合作目标航天器的掠飞轨迹设计;二、追踪航天器相对空间非合作目标航天器的转移轨迹设计;三、追踪航天器相对空间非合作目标航天器的姿态控制器设计,即完成了针对空间非合作目标的相对轨道设计及高精度姿态指向控制方法。本发明应用于空间航天器领域。

    一种非合作目标航天器相对轨道姿态有限时间控制方法

    公开(公告)号:CN105353763A

    公开(公告)日:2016-02-24

    申请号:CN201510869675.4

    申请日:2015-12-01

    CPC classification number: G05D1/0883 G05D1/101

    Abstract: 一种非合作目标航天器相对轨道姿态有限时间控制方法,涉及航空航天领域。解决了目前非合作目标的航天器相对轨道姿态联合控制中所存在的问题。一种非合作目标航天器相对轨道姿态有限时间控制方法包括以下步骤:步骤一:将用惯性系表示的相对轨道动力学模型投影到视线系,采用视线系描述航天器的相对轨道动力学模型;步骤二:建立姿态动力学模型和姿态运动学模型;步骤三:将相对轨道动力学模型、姿态动力学模型和姿态运动学模型进行状态空间表示,获得相对轨道姿态动力学模型;步骤四:根据相对轨道姿态动力学模型和有限时间控制理论获得有限时间连续控制器。本发明适用于非合作目标航天器的相对轨道姿态联合控制。

    一种相对非合作目标的航天器相对轨道有限时间抗饱和控制方法

    公开(公告)号:CN105242680A

    公开(公告)日:2016-01-13

    申请号:CN201510712305.X

    申请日:2015-10-28

    Abstract: 一种相对非合作目标的航天器相对轨道有限时间抗饱和控制方法,本发明涉及相对非合作目标的航天器相对轨道有限时间抗饱和控制方法。本发明为了解决现有控制方案中控制器的设计复杂,求解过程麻烦,脉冲控制下航天器相对轨道转移过程对未知因素的应变能力弱,采用滑模控制,控制器会频繁切换,引起系统抖振,而且在现有的方法中没有考虑到实际工程中的控制器存在饱和,不能在有限时间内收敛到期望值以及在实际的工程应用中有一定的限制的问题。具体方法为:建立相对轨道运动动力学模型;将相对轨道运动动力学模型C-W方程进行解耦,得到解耦后的双积分系统;根据解耦后的双积分系统设计有限时间饱和控制器。本发明应用于航天领域。

    一种航天器在轨服务观测空间目标局部范围的时间和燃料脉冲最优遍历方法

    公开(公告)号:CN105138011A

    公开(公告)日:2015-12-09

    申请号:CN201510547325.6

    申请日:2015-08-31

    Abstract: 一种航天器在轨服务观测空间目标局部范围的时间和燃料脉冲最优遍历方法,本发明涉及航天器轨道控制。本发明是要解决对空间目标某一局部范围进行多方位在轨服务观测的问题,而提出了一种航天器在轨服务观测空间目标局部范围的时间和燃料脉冲最优遍历方法。该方法是通过一、得到追踪航天器相对位置和相对速度的状态转移方程;二、将M°的角度的范围均分为l×l个细分的网格;三、采用螺旋形式对所有细分网格进行遍历确定遍历顺序;四、将求解最优遍历方案的问题转化成非线性规划问题;五、根据执行机构的实时情况转化成相应的速度脉冲施加给追踪航天器等步骤实现的。本发明应用于时间和燃料脉冲最优遍历领域。

    一种基于参数优化的航天器单脉冲水滴形绕飞轨迹悬停控制方法

    公开(公告)号:CN104309822A

    公开(公告)日:2015-01-28

    申请号:CN201410612686.X

    申请日:2014-11-04

    Abstract: 一种基于参数优化的航天器单脉冲水滴形绕飞轨迹悬停控制方法,属于航天器轨道控制技术领域。本发明解决了现有的定点悬停方法要求控制量是连续的;现有的单脉冲水滴形绕飞方法来实现悬停,没有考虑由于悬停时间较长,悬停在目标航天器轨道平面的追踪航天器的燃料消耗的问题。技术方案为:目标航天器处于圆形高轨轨道,相对位置范围有上下边界,本发明采用带参数优化的单脉冲水滴形绕飞轨迹方案来实现,在基于hill方程的相对运动坐标系下考虑,只要在使整个水滴形轨迹都满足悬停的位置范围要求基础上,找到使性能指标值即燃料消耗最小的方案即可。本发明主要用于航天器的轨道控制。

    一种非合作目标航天器相对轨道姿态有限时间控制方法

    公开(公告)号:CN105353763B

    公开(公告)日:2018-03-30

    申请号:CN201510869675.4

    申请日:2015-12-01

    Abstract: 一种非合作目标航天器相对轨道姿态有限时间控制方法,涉及航空航天领域。解决了目前非合作目标的航天器相对轨道姿态联合控制中所存在的问题。一种非合作目标航天器相对轨道姿态有限时间控制方法包括以下步骤:步骤一:将用惯性系表示的相对轨道动力学模型投影到视线系,采用视线系描述航天器的相对轨道动力学模型;步骤二:建立姿态动力学模型和姿态运动学模型;步骤三:将相对轨道动力学模型、姿态动力学模型和姿态运动学模型进行状态空间表示,获得相对轨道姿态动力学模型;步骤四:根据相对轨道姿态动力学模型和有限时间控制理论获得有限时间连续控制器。本发明适用于非合作目标航天器的相对轨道姿态联合控制。

    基于时间‑燃料最优控制的航天器相对轨道转移轨迹优化方法

    公开(公告)号:CN104536452B

    公开(公告)日:2017-04-26

    申请号:CN201510038688.7

    申请日:2015-01-26

    Abstract: 基于时间‑燃料最优控制的航天器相对轨道转移轨迹优化方法,涉及一种航天器相对轨道转移轨迹优化方法。本发明为了解决追踪航天器在相对轨道坐标系中,现有的方法没有考虑推力幅值有限的问题和现有的方法只考虑时间最优或者只考虑燃料消耗问题。本发明首先建立相对轨道运动动力学模型分别设计沿三个轴施加的主动控制量ux,uy,uz;然后将相对轨道运动动力学模型解耦为三个子系统:解耦成三个子系统后,将追踪航天器考虑转移时间和燃料消耗的总性能指标转化为每个轴的单轴性能指标最终得到时间—燃料最优控制律为对追踪航天器进行控制。本发明适用于航天器相对轨道转移轨迹优化。

Patent Agency Ranking